Tags

Type your tag names separated by a space and hit enter

Garenoxacin activity against isolates form patients hospitalized with community-acquired pneumonia and multidrug-resistant Streptococcus pneumoniae.
Diagn Microbiol Infect Dis. 2007 May; 58(1):1-7.DM

Abstract

Community-acquired pneumonia (CAP) continues to cause significant morbidity worldwide, and the principal bacterial pathogens (Streptococcus pneumoniae and Haemophilus influenzae) have acquired numerous resistance mechanisms over the last few decades. CAP treatment guidelines have suggested the use of broader spectrum agents, such as antipneumococcal fluoroquinolones as the therapy for at-risk patient population. In this report, we studied 3087 CAP isolates from the SENTRY Antimicrobial Surveillance Program (1999-2005) worldwide and all respiratory tract infection (RTI) isolate population of pneumococci (14665 strains) grouped by antibiogram patterns against a new des-F(6)-quinolone, garenoxacin. Results indicated that garenoxacin was highly active against CAP isolates of S. pneumoniae (MIC(90), 0.06 microg/mL) and H. influenzae (MIC(90), < or =0.03 microg/mL). This garenoxacin potency was 8- to 32-fold greater than gatifloxacin, levofloxacin, and ciprofloxacin against the pneumococci and >99.9% of strains were inhibited at < or =1 microg/mL (proposed susceptible breakpoint). Garenoxacin MIC values were not affected by resistances among S. pneumoniae strains to penicillin or erythromycin; however, coresistances were high among the beta-lactams (penicillins and cephalosporins), macrolides, tetracyclines, and trimethoprim/sulfamethoxazole. Analysis of S. pneumoniae isolates with various antimicrobial resistance patterns to 6 drug classes demonstrated that garenoxacin was active against >99.9% (MIC, < or =1 microg/mL) of strains, and the most resistant pneumococci (6-drug resistance, 1051 strains or 7.2% of all isolates) were completely susceptible (100.0% at < or =1 microg/mL) to garenoxacin (MIC(90), 0.06 microg/mL). These results illustrate the high activity of garenoxacin against contemporary CAP isolates and especially against multidrug-resistant (MDR) S. pneumoniae that have created therapeutic dilemmas for all RTI presentations. Garenoxacin appears to be a welcome addition to the CAP treatment options, particularly for the emerging MDR pneumococci strains.

Authors+Show Affiliations

JMI Laboratories, North Liberty, IA 52317, USA. ronald-jones@jmilabs.comNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

17408904

Citation

Jones, Ronald N., et al. "Garenoxacin Activity Against Isolates Form Patients Hospitalized With Community-acquired Pneumonia and Multidrug-resistant Streptococcus Pneumoniae." Diagnostic Microbiology and Infectious Disease, vol. 58, no. 1, 2007, pp. 1-7.
Jones RN, Sader HS, Stilwell MG, et al. Garenoxacin activity against isolates form patients hospitalized with community-acquired pneumonia and multidrug-resistant Streptococcus pneumoniae. Diagn Microbiol Infect Dis. 2007;58(1):1-7.
Jones, R. N., Sader, H. S., Stilwell, M. G., & Fritsche, T. R. (2007). Garenoxacin activity against isolates form patients hospitalized with community-acquired pneumonia and multidrug-resistant Streptococcus pneumoniae. Diagnostic Microbiology and Infectious Disease, 58(1), 1-7.
Jones RN, et al. Garenoxacin Activity Against Isolates Form Patients Hospitalized With Community-acquired Pneumonia and Multidrug-resistant Streptococcus Pneumoniae. Diagn Microbiol Infect Dis. 2007;58(1):1-7. PubMed PMID: 17408904.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Garenoxacin activity against isolates form patients hospitalized with community-acquired pneumonia and multidrug-resistant Streptococcus pneumoniae. AU - Jones,Ronald N, AU - Sader,Helio S, AU - Stilwell,Matthew G, AU - Fritsche,Thomas R, Y1 - 2007/04/03/ PY - 2007/01/05/received PY - 2007/01/27/accepted PY - 2007/4/6/pubmed PY - 2007/6/30/medline PY - 2007/4/6/entrez SP - 1 EP - 7 JF - Diagnostic microbiology and infectious disease JO - Diagn Microbiol Infect Dis VL - 58 IS - 1 N2 - Community-acquired pneumonia (CAP) continues to cause significant morbidity worldwide, and the principal bacterial pathogens (Streptococcus pneumoniae and Haemophilus influenzae) have acquired numerous resistance mechanisms over the last few decades. CAP treatment guidelines have suggested the use of broader spectrum agents, such as antipneumococcal fluoroquinolones as the therapy for at-risk patient population. In this report, we studied 3087 CAP isolates from the SENTRY Antimicrobial Surveillance Program (1999-2005) worldwide and all respiratory tract infection (RTI) isolate population of pneumococci (14665 strains) grouped by antibiogram patterns against a new des-F(6)-quinolone, garenoxacin. Results indicated that garenoxacin was highly active against CAP isolates of S. pneumoniae (MIC(90), 0.06 microg/mL) and H. influenzae (MIC(90), < or =0.03 microg/mL). This garenoxacin potency was 8- to 32-fold greater than gatifloxacin, levofloxacin, and ciprofloxacin against the pneumococci and >99.9% of strains were inhibited at < or =1 microg/mL (proposed susceptible breakpoint). Garenoxacin MIC values were not affected by resistances among S. pneumoniae strains to penicillin or erythromycin; however, coresistances were high among the beta-lactams (penicillins and cephalosporins), macrolides, tetracyclines, and trimethoprim/sulfamethoxazole. Analysis of S. pneumoniae isolates with various antimicrobial resistance patterns to 6 drug classes demonstrated that garenoxacin was active against >99.9% (MIC, < or =1 microg/mL) of strains, and the most resistant pneumococci (6-drug resistance, 1051 strains or 7.2% of all isolates) were completely susceptible (100.0% at < or =1 microg/mL) to garenoxacin (MIC(90), 0.06 microg/mL). These results illustrate the high activity of garenoxacin against contemporary CAP isolates and especially against multidrug-resistant (MDR) S. pneumoniae that have created therapeutic dilemmas for all RTI presentations. Garenoxacin appears to be a welcome addition to the CAP treatment options, particularly for the emerging MDR pneumococci strains. SN - 0732-8893 UR - https://www.unboundmedicine.com/medline/citation/17408904/Garenoxacin_activity_against_isolates_form_patients_hospitalized_with_community_acquired_pneumonia_and_multidrug_resistant_Streptococcus_pneumoniae_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0732-8893(07)00055-7 DB - PRIME DP - Unbound Medicine ER -