Tags

Type your tag names separated by a space and hit enter

Polyamine effects on antibiotic susceptibility in bacteria.
Antimicrob Agents Chemother. 2007 Jun; 51(6):2070-7.AA

Abstract

Biogenic polyamines (e.g., spermidine and spermine) are a group of essential polycationic compounds found in all living cells. The effects of spermine and spermidine on antibiotic susceptibility were examined with gram-negative Escherichia coli and Salmonella enterica serovar Typhimurium bacteria and clinical isolates of Pseudomonas aeruginosa and with gram-positive Staphylococcus aureus bacteria, including methicillin-resistant S. aureus (MRSA). Exogenous spermine exerted a dose-dependent inhibition effect on the growth of E. coli, S. enterica serovar Typhimurium, and S. aureus but not P. aeruginosa, as depicted by MIC and growth curve measurements. While the MICs of polymyxin and ciprofloxacin were in general increased by exogenous spermine and spermidine in P. aeruginosa, this adverse effect was not observed in enteric bacteria and S. aureus. It was found that spermine and spermidine can decrease the MICs of beta-lactam antibiotics in all strains as well as other types of antibiotics in a strain-dependent manner. Significantly, the MICs of oxacillin for MRSA Mu50 and N315 were decreased more than 200-fold in the presence of spermine, and this effect of spermine was retained when assessed in the presence of divalent ions (magnesium or calcium; 3 mM) or sodium chloride (150 mM). The effect of spermine on the sensitization of P. aeruginosa and MRSA to antibiotics was further demonstrated by population analysis and time-killing assays. The results of checkerboard assays with E. coli and S. aureus indicated a strong synergistic effect of spermine in combination with beta-lactams and chloramphenicol. The decreased MICs of beta-lactams implied that the possible blockage of outer membrane porins by exogenous spermine or spermidine did not play a crucial role in most cases. In contrast, only the MIC of imipenem against P. aeruginosa was increased by exogenous spermine and spermidine, and this resistance effect was abolished in a mutant strain devoid of the outer membrane porin OprD. In E. coli, the MICs of carbenicillin, chloramphenicol, and tetracycline were decreased in two acrA mutants devoid of a major efflux pump, AcrAB. However, retention of the spermine effect on antibiotic susceptibility in two acrA mutants of E. coli suggested that the AcrAB efflux pump was not the target for a synergistic effect by spermine and antibiotics and ruled out the hypothesis of spermine serving as an efflux pump inhibitor in this organism. In summary, this interesting finding of the effect of spermine on antibiotic susceptibility provides the basis for a new potential approach against drug-resistant pathogens by use of existing beta-lactam antibiotics.

Authors+Show Affiliations

Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA.No affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

17438056

Citation

Kwon, Dong-Hyeon, and Chung-Dar Lu. "Polyamine Effects On Antibiotic Susceptibility in Bacteria." Antimicrobial Agents and Chemotherapy, vol. 51, no. 6, 2007, pp. 2070-7.
Kwon DH, Lu CD. Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob Agents Chemother. 2007;51(6):2070-7.
Kwon, D. H., & Lu, C. D. (2007). Polyamine effects on antibiotic susceptibility in bacteria. Antimicrobial Agents and Chemotherapy, 51(6), 2070-7.
Kwon DH, Lu CD. Polyamine Effects On Antibiotic Susceptibility in Bacteria. Antimicrob Agents Chemother. 2007;51(6):2070-7. PubMed PMID: 17438056.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Polyamine effects on antibiotic susceptibility in bacteria. AU - Kwon,Dong-Hyeon, AU - Lu,Chung-Dar, Y1 - 2007/04/16/ PY - 2007/4/18/pubmed PY - 2007/8/19/medline PY - 2007/4/18/entrez SP - 2070 EP - 7 JF - Antimicrobial agents and chemotherapy JO - Antimicrob. Agents Chemother. VL - 51 IS - 6 N2 - Biogenic polyamines (e.g., spermidine and spermine) are a group of essential polycationic compounds found in all living cells. The effects of spermine and spermidine on antibiotic susceptibility were examined with gram-negative Escherichia coli and Salmonella enterica serovar Typhimurium bacteria and clinical isolates of Pseudomonas aeruginosa and with gram-positive Staphylococcus aureus bacteria, including methicillin-resistant S. aureus (MRSA). Exogenous spermine exerted a dose-dependent inhibition effect on the growth of E. coli, S. enterica serovar Typhimurium, and S. aureus but not P. aeruginosa, as depicted by MIC and growth curve measurements. While the MICs of polymyxin and ciprofloxacin were in general increased by exogenous spermine and spermidine in P. aeruginosa, this adverse effect was not observed in enteric bacteria and S. aureus. It was found that spermine and spermidine can decrease the MICs of beta-lactam antibiotics in all strains as well as other types of antibiotics in a strain-dependent manner. Significantly, the MICs of oxacillin for MRSA Mu50 and N315 were decreased more than 200-fold in the presence of spermine, and this effect of spermine was retained when assessed in the presence of divalent ions (magnesium or calcium; 3 mM) or sodium chloride (150 mM). The effect of spermine on the sensitization of P. aeruginosa and MRSA to antibiotics was further demonstrated by population analysis and time-killing assays. The results of checkerboard assays with E. coli and S. aureus indicated a strong synergistic effect of spermine in combination with beta-lactams and chloramphenicol. The decreased MICs of beta-lactams implied that the possible blockage of outer membrane porins by exogenous spermine or spermidine did not play a crucial role in most cases. In contrast, only the MIC of imipenem against P. aeruginosa was increased by exogenous spermine and spermidine, and this resistance effect was abolished in a mutant strain devoid of the outer membrane porin OprD. In E. coli, the MICs of carbenicillin, chloramphenicol, and tetracycline were decreased in two acrA mutants devoid of a major efflux pump, AcrAB. However, retention of the spermine effect on antibiotic susceptibility in two acrA mutants of E. coli suggested that the AcrAB efflux pump was not the target for a synergistic effect by spermine and antibiotics and ruled out the hypothesis of spermine serving as an efflux pump inhibitor in this organism. In summary, this interesting finding of the effect of spermine on antibiotic susceptibility provides the basis for a new potential approach against drug-resistant pathogens by use of existing beta-lactam antibiotics. SN - 0066-4804 UR - https://www.unboundmedicine.com/medline/citation/17438056/Polyamine_effects_on_antibiotic_susceptibility_in_bacteria_ L2 - http://aac.asm.org/cgi/pmidlookup?view=long&pmid=17438056 DB - PRIME DP - Unbound Medicine ER -