Tags

Type your tag names separated by a space and hit enter

Evaluation of anticancer effects of newly synthesized dihydropyridine derivatives in comparison to verapamil and doxorubicin on T47D parental and resistant cell lines in vitro.
Cell Biol Toxicol. 2008 Apr; 24(2):165-74.CB

Abstract

Failure of current anticancer drugs mandates screening for new compounds of synthetic or biological origin to be used in cancer therapy. Multidrug resistance (MDR) is one of the main obstacles in the chemotherapy of cancer. Efflux of cytotoxic agents mediated by P-glycoprotein (P-gp or MDR1) is believed to be an important mechanism of multidrug resistance. Therefore, we decided to investigate the antiproliferative effects of seven newly synthesized 1,4-dihydropyridine (DHP) derivatives in comparison to verapamil (VP) and doxorubicin (DOX) on human breast cancer T47D cells and its MDR1 overexpressed and moderately resistant cells (RS cells) using MTT cytotoxicity assay. We also examined the effects of these compounds on cytotoxicity of DOX in these two cell types. The cytotoxicity assays using MTT showed that most of the tested new DHP derivatives and VP at 10 microM concentration had varying levels of toxicity on both T47D and RS cells. The toxicity was mostly in the range of 10-25%. However, the cytotoxicity of these DHP derivatives, similar to VP, was significantly less than DOX when comparing IC(50) values. Furthermore, these compounds in general had relatively more cytotoxicity on T47D vs RS cells at 10-microM concentration. Among new DHPs, compounds 7a (3,5-dibenzoyl-4-(2-methylthiazol-4-yl)-1,4-dihydro-2,6-dimethylpyridine) and 7d (3,5-diacetyl-4-[2-(2-chlorophenyl)thiazol-4-yl)]-1,4-dihydro-2,6-dimethylpyridine) showed noticeable potentiation of DOX cytotoxicity (reduction of DOX IC(50)) compared to DOX alone in both cells, particularly in RS cells. This effect was similar to that of VP, a known prototype of MDR1 reversal agent. In other words, compounds 7a and 7d resensitized RS cells to DOX or reversed their resistance. Results indicate that compound 7d exerts highest effect on RS cells. Therefore, these two newly synthesized DHP derivatives, compounds 7a and 7d, are promising as potential new MDR1 reversal agents and should be further studied on other highly resistant cells due to MDR1 overexpression and with further molecular investigation.

Authors+Show Affiliations

Molecular Research Laboratory, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medical Sciences, University of Tehran, Tehran, Iran.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Comparative Study
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

17805981

Citation

Bazargan, L, et al. "Evaluation of Anticancer Effects of Newly Synthesized Dihydropyridine Derivatives in Comparison to Verapamil and Doxorubicin On T47D Parental and Resistant Cell Lines in Vitro." Cell Biology and Toxicology, vol. 24, no. 2, 2008, pp. 165-74.
Bazargan L, Fouladdel S, Shafiee A, et al. Evaluation of anticancer effects of newly synthesized dihydropyridine derivatives in comparison to verapamil and doxorubicin on T47D parental and resistant cell lines in vitro. Cell Biol Toxicol. 2008;24(2):165-74.
Bazargan, L., Fouladdel, S., Shafiee, A., Amini, M., Ghaffari, S. M., & Azizi, E. (2008). Evaluation of anticancer effects of newly synthesized dihydropyridine derivatives in comparison to verapamil and doxorubicin on T47D parental and resistant cell lines in vitro. Cell Biology and Toxicology, 24(2), 165-74.
Bazargan L, et al. Evaluation of Anticancer Effects of Newly Synthesized Dihydropyridine Derivatives in Comparison to Verapamil and Doxorubicin On T47D Parental and Resistant Cell Lines in Vitro. Cell Biol Toxicol. 2008;24(2):165-74. PubMed PMID: 17805981.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Evaluation of anticancer effects of newly synthesized dihydropyridine derivatives in comparison to verapamil and doxorubicin on T47D parental and resistant cell lines in vitro. AU - Bazargan,L, AU - Fouladdel,S, AU - Shafiee,A, AU - Amini,M, AU - Ghaffari,S M, AU - Azizi,E, Y1 - 2007/09/06/ PY - 2006/11/08/received PY - 2007/05/24/accepted PY - 2007/9/7/pubmed PY - 2008/9/18/medline PY - 2007/9/7/entrez SP - 165 EP - 74 JF - Cell biology and toxicology JO - Cell Biol Toxicol VL - 24 IS - 2 N2 - Failure of current anticancer drugs mandates screening for new compounds of synthetic or biological origin to be used in cancer therapy. Multidrug resistance (MDR) is one of the main obstacles in the chemotherapy of cancer. Efflux of cytotoxic agents mediated by P-glycoprotein (P-gp or MDR1) is believed to be an important mechanism of multidrug resistance. Therefore, we decided to investigate the antiproliferative effects of seven newly synthesized 1,4-dihydropyridine (DHP) derivatives in comparison to verapamil (VP) and doxorubicin (DOX) on human breast cancer T47D cells and its MDR1 overexpressed and moderately resistant cells (RS cells) using MTT cytotoxicity assay. We also examined the effects of these compounds on cytotoxicity of DOX in these two cell types. The cytotoxicity assays using MTT showed that most of the tested new DHP derivatives and VP at 10 microM concentration had varying levels of toxicity on both T47D and RS cells. The toxicity was mostly in the range of 10-25%. However, the cytotoxicity of these DHP derivatives, similar to VP, was significantly less than DOX when comparing IC(50) values. Furthermore, these compounds in general had relatively more cytotoxicity on T47D vs RS cells at 10-microM concentration. Among new DHPs, compounds 7a (3,5-dibenzoyl-4-(2-methylthiazol-4-yl)-1,4-dihydro-2,6-dimethylpyridine) and 7d (3,5-diacetyl-4-[2-(2-chlorophenyl)thiazol-4-yl)]-1,4-dihydro-2,6-dimethylpyridine) showed noticeable potentiation of DOX cytotoxicity (reduction of DOX IC(50)) compared to DOX alone in both cells, particularly in RS cells. This effect was similar to that of VP, a known prototype of MDR1 reversal agent. In other words, compounds 7a and 7d resensitized RS cells to DOX or reversed their resistance. Results indicate that compound 7d exerts highest effect on RS cells. Therefore, these two newly synthesized DHP derivatives, compounds 7a and 7d, are promising as potential new MDR1 reversal agents and should be further studied on other highly resistant cells due to MDR1 overexpression and with further molecular investigation. SN - 0742-2091 UR - https://www.unboundmedicine.com/medline/citation/17805981/Evaluation_of_anticancer_effects_of_newly_synthesized_dihydropyridine_derivatives_in_comparison_to_verapamil_and_doxorubicin_on_T47D_parental_and_resistant_cell_lines_in_vitro_ L2 - https://doi.org/10.1007/s10565-007-9026-x DB - PRIME DP - Unbound Medicine ER -