Tags

Type your tag names separated by a space and hit enter

[Effect of increased posterior tibial slope or partial posterior cruciate ligament release on knee kinematics of total knee arthroplasty].
Zhonghua Wai Ke Za Zhi. 2007 Jun 15; 45(12):839-42.ZW

Abstract

OBJECTIVE

To compare the effects of increased posterior tibial slope or partial posterior cruciate ligament (PCL) release on knee kinematics of total knee arthroplasty (TKA).

METHODS

Anteroposterior laxity, rotational laxity, varus and valgus laxity and maximum flexion angle were evaluated in 6 normal cadaver knees and the knees after TKA at flexion 0 degrees , 30 degrees , 60 degrees , 90 degrees and 120 degrees . Then the femoral prosthesis was shifted 5 mm posteriorly to simulate the tightly implanted knee. The same tests were performed on the tightly implanted knees. After that, the posterior tibial slope was increased 4 degrees or the PCL was partially released, and the same tests were made as in the normal knees respectively. Statistical analysis of the results was made using student's t test.

RESULTS

Anteroposterior laxity, rotational laxity and varus and valgus laxity of the tightly implanted knees at flexion 30 degrees , 60 degrees , 90 degrees and 120 degrees were significantly less than those of the normal TKA knees (P < 0.05). Compared with the tightly implanted knees, anteroposterior laxity, rotational laxity and varus and valgus laxity at flexion 30 degrees , 60 degrees , 90 degrees and 120 degrees significantly improved after increased 4 degrees posterior tibial slope (P < 0.05); in the partial PCL released group, anteroposterior laxity at flexion 30 degrees , 60 degrees , 90 degrees and 120 degrees was significantly improved (P < 0.05), varus and valgus laxity was significantly improved only at flexion 90 degrees (P < 0.05), and rotational laxity was significantly improved at flexion 30 degrees , 60 degrees and 90 degrees (P < 0.05). Compared with PCL released group, varus and valgus laxity at flexion 30 degrees , 60 degrees and 90 degrees and rotational laxity at flexion 0 degrees , 30 degrees , 60 degrees and 90 degrees were significantly improved in the group of increased 4 degrees posterior tibial slope (P < 0.05). Maximum flexion angle of the tightly implanted knee (120.4 degrees) was less than that of the normal TKA knees (130.3 degrees , P < 0.05) and that of increased 4 degrees posterior tibial slope group (131.1 degrees , P < 0.05). There was no significant difference at the maximum flexion angle between the increased 4 degrees posterior tibial slope group and the PCL released group (131.1 degrees vs 124.0 degrees , P = 0.0816).

CONCLUSIONS

Anteroposterior laxity, varus and valgus laxity, rotational laxity and maximum flexion angle of the tightly implanted knees are less than those of the normal TKA knees. After increased 4 degrees posterior tibial slope, these indexes are improved significantly. Partial PCL released can significantly improve the anteroposterior laxity and had less effect on the varus and valgus laxity, rotational laxity and maximum flexion angle. So, a knee that is tight in flexion can be more likely to be corrected by increasing posterior tibial slope than by partially releasing PCL.

Authors+Show Affiliations

Department of Orthopaedics, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

English Abstract
Journal Article
Research Support, Non-U.S. Gov't

Language

chi

PubMed ID

17845788

Citation

Wang, Xiao-feng, et al. "[Effect of Increased Posterior Tibial Slope or Partial Posterior Cruciate Ligament Release On Knee Kinematics of Total Knee Arthroplasty]." Zhonghua Wai Ke Za Zhi [Chinese Journal of Surgery], vol. 45, no. 12, 2007, pp. 839-42.
Wang XF, Chen BC, Shi CX, et al. [Effect of increased posterior tibial slope or partial posterior cruciate ligament release on knee kinematics of total knee arthroplasty]. Zhonghua Wai Ke Za Zhi. 2007;45(12):839-42.
Wang, X. F., Chen, B. C., Shi, C. X., Gao, S. J., Shao, D. C., Li, T., Lu, B., & Chen, J. Q. (2007). [Effect of increased posterior tibial slope or partial posterior cruciate ligament release on knee kinematics of total knee arthroplasty]. Zhonghua Wai Ke Za Zhi [Chinese Journal of Surgery], 45(12), 839-42.
Wang XF, et al. [Effect of Increased Posterior Tibial Slope or Partial Posterior Cruciate Ligament Release On Knee Kinematics of Total Knee Arthroplasty]. Zhonghua Wai Ke Za Zhi. 2007 Jun 15;45(12):839-42. PubMed PMID: 17845788.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - [Effect of increased posterior tibial slope or partial posterior cruciate ligament release on knee kinematics of total knee arthroplasty]. AU - Wang,Xiao-feng, AU - Chen,Bai-cheng, AU - Shi,Chen-xia, AU - Gao,Shi-jun, AU - Shao,De-cheng, AU - Li,Tong, AU - Lu,Bo, AU - Chen,Jing-qing, PY - 2007/9/12/pubmed PY - 2008/12/17/medline PY - 2007/9/12/entrez SP - 839 EP - 42 JF - Zhonghua wai ke za zhi [Chinese journal of surgery] JO - Zhonghua Wai Ke Za Zhi VL - 45 IS - 12 N2 - OBJECTIVE: To compare the effects of increased posterior tibial slope or partial posterior cruciate ligament (PCL) release on knee kinematics of total knee arthroplasty (TKA). METHODS: Anteroposterior laxity, rotational laxity, varus and valgus laxity and maximum flexion angle were evaluated in 6 normal cadaver knees and the knees after TKA at flexion 0 degrees , 30 degrees , 60 degrees , 90 degrees and 120 degrees . Then the femoral prosthesis was shifted 5 mm posteriorly to simulate the tightly implanted knee. The same tests were performed on the tightly implanted knees. After that, the posterior tibial slope was increased 4 degrees or the PCL was partially released, and the same tests were made as in the normal knees respectively. Statistical analysis of the results was made using student's t test. RESULTS: Anteroposterior laxity, rotational laxity and varus and valgus laxity of the tightly implanted knees at flexion 30 degrees , 60 degrees , 90 degrees and 120 degrees were significantly less than those of the normal TKA knees (P < 0.05). Compared with the tightly implanted knees, anteroposterior laxity, rotational laxity and varus and valgus laxity at flexion 30 degrees , 60 degrees , 90 degrees and 120 degrees significantly improved after increased 4 degrees posterior tibial slope (P < 0.05); in the partial PCL released group, anteroposterior laxity at flexion 30 degrees , 60 degrees , 90 degrees and 120 degrees was significantly improved (P < 0.05), varus and valgus laxity was significantly improved only at flexion 90 degrees (P < 0.05), and rotational laxity was significantly improved at flexion 30 degrees , 60 degrees and 90 degrees (P < 0.05). Compared with PCL released group, varus and valgus laxity at flexion 30 degrees , 60 degrees and 90 degrees and rotational laxity at flexion 0 degrees , 30 degrees , 60 degrees and 90 degrees were significantly improved in the group of increased 4 degrees posterior tibial slope (P < 0.05). Maximum flexion angle of the tightly implanted knee (120.4 degrees) was less than that of the normal TKA knees (130.3 degrees , P < 0.05) and that of increased 4 degrees posterior tibial slope group (131.1 degrees , P < 0.05). There was no significant difference at the maximum flexion angle between the increased 4 degrees posterior tibial slope group and the PCL released group (131.1 degrees vs 124.0 degrees , P = 0.0816). CONCLUSIONS: Anteroposterior laxity, varus and valgus laxity, rotational laxity and maximum flexion angle of the tightly implanted knees are less than those of the normal TKA knees. After increased 4 degrees posterior tibial slope, these indexes are improved significantly. Partial PCL released can significantly improve the anteroposterior laxity and had less effect on the varus and valgus laxity, rotational laxity and maximum flexion angle. So, a knee that is tight in flexion can be more likely to be corrected by increasing posterior tibial slope than by partially releasing PCL. SN - 0529-5815 UR - https://www.unboundmedicine.com/medline/citation/17845788/[Effect_of_increased_posterior_tibial_slope_or_partial_posterior_cruciate_ligament_release_on_knee_kinematics_of_total_knee_arthroplasty]_ DB - PRIME DP - Unbound Medicine ER -