Tags

Type your tag names separated by a space and hit enter

Proteasome inhibitor lactacystin ablates liver injury induced by intestinal ischaemia-reperfusion.
Clin Exp Pharmacol Physiol. 2007 Nov; 34(11):1102-8.CE

Abstract

1. The aim of the present study was to investigate the role of proteasome in the pathogenesis of liver injury induced by intestinal ischaemia-reperfusion (I/R) and the effect of the proteasome inhibitor lactacystin on neutrophil infiltration, intracellular adhesion molecule (ICAM)-1 and nuclear factor (NF)-kappaB expression in the liver tissues of rats. 2. Thirty-two Wistar rats were randomly divided into four groups (n = 8 in each group) as follows: (i) a control, sham-operated group; (ii) an I/R group subjected to 1 h intestinal ischaemia and 4 h reperfusion; (iii) a group pretreated with 0.2 mg/kg lactacystin 1 h before intestinal I/R; and (iv) a group pretreated with 0.6 mg/kg lactacystin 1 h before intestinal I/R. Liver and intestine histology were observed. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH), as well as 20S proteasome activity in circulating white blood cells, were measured. Myeloperoxidase (MPO) activity in liver tissues and the immunohistochemical expression of liver NF-kappaB and ICAM-1 were assayed. In addition, a western blot of liver NF-kappaB was performed. 3. Compared with the sham-operated control group, liver and intestine injury was induced by intestinal I/R, characterized as histological damage including oedema, haemorrhage and infiltration by inflammatory cells, as well as a significant increase in serum AST (365 +/- 121 vs 546 +/- 297 IU/L, respectively; P < 0.05), ALT (65 +/- 23 vs 175 +/- 54 IU/L, respectively; P < 0.01) and LDH levels (733 +/- 383 vs 1434 +/- 890 IU/L, respectively; P < 0.05). Compared with the control group, MPO activity in the liver tissues increased significantly in the I/R group (2.05 +/- 0.69 vs 3.42 +/- 1.11 U/g, respectively; P < 0.05). Strong positive expression of liver ICAM-1 and NF-kappaB p65 was observed. 4. Compared with the intestinal I/R group, administration of 0.6 mg/kg lactacystin markedly reduced 20S proteasome activity in circulating white blood cells (15.47 +/- 4.00 vs 2.07 +/- 2.00 pmol 7-amino-4-methylcoumarin (AMC)/s per mg, respectively; P < 0.01) and ameliorated liver injury, which was demonstrated by decreased levels of serum AST (546 +/- 297 vs 367 +/- 86 IU/L, respectively; P < 0.05), ALT (175 +/- 54 vs 135 +/- 26 IU/L, respectively; P < 0.05) and LDH (1434 +/- 890 vs 742 +/- 218 IU/L, respectively; P < 0.05) and a reduced liver pathological score (2.13 +/- 0.64 vs 1.25 +/- 0.46, respectively; P < 0.01). Compared with the intestinal I/R group, MPO activity in liver tissues decreased significantly following lactacystin pretreatment (3.42 +/- 1.11 vs 2.58 +/- 0.61 U/g, respectively; P < 0.05) and the expression of liver NF-kappaB and ICAM-1 was markedly ameliorated. 5. The present study reveals that the proteasome inhibitor lactacystin ablates liver injury induced by intestinal I/R. One possible mechanism responsible for this effect is the inhibition of enhanced ICAM-1 and neutrophil infiltration by inhibition of NF-kappaB activity. The results suggest the feasibility of using proteasome inhibitor clinically in the treatment of intestinal I/R.

Authors+Show Affiliations

Department of Pharmacology, Dalian Medical University, Dalian, China.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

17880361

Citation

Yao, Ji-Hong, et al. "Proteasome Inhibitor Lactacystin Ablates Liver Injury Induced By Intestinal Ischaemia-reperfusion." Clinical and Experimental Pharmacology & Physiology, vol. 34, no. 11, 2007, pp. 1102-8.
Yao JH, Li YH, Wang ZZ, et al. Proteasome inhibitor lactacystin ablates liver injury induced by intestinal ischaemia-reperfusion. Clin Exp Pharmacol Physiol. 2007;34(11):1102-8.
Yao, J. H., Li, Y. H., Wang, Z. Z., Zhang, X. S., Wang, Y. Z., Yuan, J. C., Zhou, Q., Liu, K. X., & Tian, X. F. (2007). Proteasome inhibitor lactacystin ablates liver injury induced by intestinal ischaemia-reperfusion. Clinical and Experimental Pharmacology & Physiology, 34(11), 1102-8.
Yao JH, et al. Proteasome Inhibitor Lactacystin Ablates Liver Injury Induced By Intestinal Ischaemia-reperfusion. Clin Exp Pharmacol Physiol. 2007;34(11):1102-8. PubMed PMID: 17880361.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Proteasome inhibitor lactacystin ablates liver injury induced by intestinal ischaemia-reperfusion. AU - Yao,Ji-Hong, AU - Li,Ying-Hua, AU - Wang,Zhen-Zhen, AU - Zhang,Xue-Song, AU - Wang,Yu-Zhu, AU - Yuan,Jin-Chan, AU - Zhou,Qin, AU - Liu,Ke-Xin, AU - Tian,Xiao-Feng, PY - 2007/9/21/pubmed PY - 2007/12/6/medline PY - 2007/9/21/entrez SP - 1102 EP - 8 JF - Clinical and experimental pharmacology & physiology JO - Clin Exp Pharmacol Physiol VL - 34 IS - 11 N2 - 1. The aim of the present study was to investigate the role of proteasome in the pathogenesis of liver injury induced by intestinal ischaemia-reperfusion (I/R) and the effect of the proteasome inhibitor lactacystin on neutrophil infiltration, intracellular adhesion molecule (ICAM)-1 and nuclear factor (NF)-kappaB expression in the liver tissues of rats. 2. Thirty-two Wistar rats were randomly divided into four groups (n = 8 in each group) as follows: (i) a control, sham-operated group; (ii) an I/R group subjected to 1 h intestinal ischaemia and 4 h reperfusion; (iii) a group pretreated with 0.2 mg/kg lactacystin 1 h before intestinal I/R; and (iv) a group pretreated with 0.6 mg/kg lactacystin 1 h before intestinal I/R. Liver and intestine histology were observed. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH), as well as 20S proteasome activity in circulating white blood cells, were measured. Myeloperoxidase (MPO) activity in liver tissues and the immunohistochemical expression of liver NF-kappaB and ICAM-1 were assayed. In addition, a western blot of liver NF-kappaB was performed. 3. Compared with the sham-operated control group, liver and intestine injury was induced by intestinal I/R, characterized as histological damage including oedema, haemorrhage and infiltration by inflammatory cells, as well as a significant increase in serum AST (365 +/- 121 vs 546 +/- 297 IU/L, respectively; P < 0.05), ALT (65 +/- 23 vs 175 +/- 54 IU/L, respectively; P < 0.01) and LDH levels (733 +/- 383 vs 1434 +/- 890 IU/L, respectively; P < 0.05). Compared with the control group, MPO activity in the liver tissues increased significantly in the I/R group (2.05 +/- 0.69 vs 3.42 +/- 1.11 U/g, respectively; P < 0.05). Strong positive expression of liver ICAM-1 and NF-kappaB p65 was observed. 4. Compared with the intestinal I/R group, administration of 0.6 mg/kg lactacystin markedly reduced 20S proteasome activity in circulating white blood cells (15.47 +/- 4.00 vs 2.07 +/- 2.00 pmol 7-amino-4-methylcoumarin (AMC)/s per mg, respectively; P < 0.01) and ameliorated liver injury, which was demonstrated by decreased levels of serum AST (546 +/- 297 vs 367 +/- 86 IU/L, respectively; P < 0.05), ALT (175 +/- 54 vs 135 +/- 26 IU/L, respectively; P < 0.05) and LDH (1434 +/- 890 vs 742 +/- 218 IU/L, respectively; P < 0.05) and a reduced liver pathological score (2.13 +/- 0.64 vs 1.25 +/- 0.46, respectively; P < 0.01). Compared with the intestinal I/R group, MPO activity in liver tissues decreased significantly following lactacystin pretreatment (3.42 +/- 1.11 vs 2.58 +/- 0.61 U/g, respectively; P < 0.05) and the expression of liver NF-kappaB and ICAM-1 was markedly ameliorated. 5. The present study reveals that the proteasome inhibitor lactacystin ablates liver injury induced by intestinal I/R. One possible mechanism responsible for this effect is the inhibition of enhanced ICAM-1 and neutrophil infiltration by inhibition of NF-kappaB activity. The results suggest the feasibility of using proteasome inhibitor clinically in the treatment of intestinal I/R. SN - 0305-1870 UR - https://www.unboundmedicine.com/medline/citation/17880361/Proteasome_inhibitor_lactacystin_ablates_liver_injury_induced_by_intestinal_ischaemia_reperfusion_ DB - PRIME DP - Unbound Medicine ER -