Tags

Type your tag names separated by a space and hit enter

Encapsulation of porcine islets permits extended culture time and insulin independence in spontaneously diabetic BB rats.
Cell Transplant. 2007; 16(6):609-20.CT

Abstract

The ability to culture porcine islets for extended times allows for both their functional assessment and the assurance of their microbiological safety prior to transplantation. We have previously shown that agarose-encapsulated porcine islets can be cultured for at least 24 weeks. In the current study, porcine islet agarose macrobeads cultured for up to 67 weeks were assessed for their ability to restore normoglycemia, respond to an intraperitoneal glucose challenge, maintain spontaneously diabetic BB rats free of insulin therapy for more than 6 months, and for their biocompatibility. Porcine islets were encapsulated in agarose macrobeads and subjected to weekly static perifusion assays for the assessment of insulin production. After in vitro culture for either 9, 40, or 67 weeks, 56-60 macrobeads were transplanted to each spontaneously diabetic BB rat. Transplanted rats were monitored daily for blood glucose levels. Glucose tolerance tests and assessments for porcine C-peptide were conducted at various intervals throughout the study. Normoglycemia (100-200 mg/dl) was initially restored in all islet transplanted rats. Moderate hyperglycemia (200-400 mg/dl) developed at around 30 days posttransplantation and continued throughout the study period of 201-202 days. Importantly, all rats that received encapsulated porcine islets continued to gain weight and were free of exogenous insulin therapy for the entire study. Porcine C-peptide (0.2-0.9 ng/ml) was detected in the serum of islet recipients throughout the study period. No differences were detected between recipient animals receiving islet macrobeads of various ages. These results demonstrate that the encapsulation of porcine islets in agarose macrobeads allows for extended culture periods and is an appropriate strategy for functional and microbiological assessment prior to clinical use.

Authors+Show Affiliations

The Rogosin Institute-Xenia Division, Xenia, OH 45385, USA. lgazda@rixd.orgNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

17912952

Citation

Gazda, Lawrence S., et al. "Encapsulation of Porcine Islets Permits Extended Culture Time and Insulin Independence in Spontaneously Diabetic BB Rats." Cell Transplantation, vol. 16, no. 6, 2007, pp. 609-20.
Gazda LS, Vinerean HV, Laramore MA, et al. Encapsulation of porcine islets permits extended culture time and insulin independence in spontaneously diabetic BB rats. Cell Transplant. 2007;16(6):609-20.
Gazda, L. S., Vinerean, H. V., Laramore, M. A., Diehl, C. H., Hall, R. D., Rubin, A. L., & Smith, B. H. (2007). Encapsulation of porcine islets permits extended culture time and insulin independence in spontaneously diabetic BB rats. Cell Transplantation, 16(6), 609-20.
Gazda LS, et al. Encapsulation of Porcine Islets Permits Extended Culture Time and Insulin Independence in Spontaneously Diabetic BB Rats. Cell Transplant. 2007;16(6):609-20. PubMed PMID: 17912952.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Encapsulation of porcine islets permits extended culture time and insulin independence in spontaneously diabetic BB rats. AU - Gazda,Lawrence S, AU - Vinerean,Horatiu V, AU - Laramore,Melissa A, AU - Diehl,Carolyn H, AU - Hall,Richard D, AU - Rubin,Albert L, AU - Smith,Barry H, PY - 2007/10/5/pubmed PY - 2007/12/6/medline PY - 2007/10/5/entrez SP - 609 EP - 20 JF - Cell transplantation JO - Cell Transplant VL - 16 IS - 6 N2 - The ability to culture porcine islets for extended times allows for both their functional assessment and the assurance of their microbiological safety prior to transplantation. We have previously shown that agarose-encapsulated porcine islets can be cultured for at least 24 weeks. In the current study, porcine islet agarose macrobeads cultured for up to 67 weeks were assessed for their ability to restore normoglycemia, respond to an intraperitoneal glucose challenge, maintain spontaneously diabetic BB rats free of insulin therapy for more than 6 months, and for their biocompatibility. Porcine islets were encapsulated in agarose macrobeads and subjected to weekly static perifusion assays for the assessment of insulin production. After in vitro culture for either 9, 40, or 67 weeks, 56-60 macrobeads were transplanted to each spontaneously diabetic BB rat. Transplanted rats were monitored daily for blood glucose levels. Glucose tolerance tests and assessments for porcine C-peptide were conducted at various intervals throughout the study. Normoglycemia (100-200 mg/dl) was initially restored in all islet transplanted rats. Moderate hyperglycemia (200-400 mg/dl) developed at around 30 days posttransplantation and continued throughout the study period of 201-202 days. Importantly, all rats that received encapsulated porcine islets continued to gain weight and were free of exogenous insulin therapy for the entire study. Porcine C-peptide (0.2-0.9 ng/ml) was detected in the serum of islet recipients throughout the study period. No differences were detected between recipient animals receiving islet macrobeads of various ages. These results demonstrate that the encapsulation of porcine islets in agarose macrobeads allows for extended culture periods and is an appropriate strategy for functional and microbiological assessment prior to clinical use. SN - 0963-6897 UR - https://www.unboundmedicine.com/medline/citation/17912952/Encapsulation_of_porcine_islets_permits_extended_culture_time_and_insulin_independence_in_spontaneously_diabetic_BB_rats_ L2 - https://journals.sagepub.com/doi/10.3727/000000007783465028?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub=pubmed DB - PRIME DP - Unbound Medicine ER -