Tags

Type your tag names separated by a space and hit enter

A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects.
J Am Coll Nutr. 2007 Oct; 26(5):434-44.JA

Abstract

OBJECTIVE

To study the effects of three weight-maintenance diets with different macronutrient composition on carbohydrate, lipid metabolism, insulin and incretin levels in insulin-resistant subjects.

METHODS

A prospective study was performed in eleven (7 W, 4 M) offspring of obese and type 2 diabetes patients. Subjects had a BMI > 25 Kg/m2, waist circumference (men/women) > 102/88, HBA1c < 6.5% and were regarded as insulin-resistant after an OGTT (Matsuda ISIm <4). They were randomly divided into three groups and underwent three dietary periods each of 28 days in a crossover design: a) diet high in saturated fat (SAT), b) diet rich in monounsaturated fat (MUFA; Mediterranean diet) and c) diet rich in carbohydrate (CHO).

RESULTS

Body weight and resting energy expenditure did not changed during the three dietary periods. Fasting serum glucose concentrations fell during MUFA-rich and CHO-rich diets compared with high-SAT diets (5.02 +/- 0.1, 5.03 +/- 0.1, 5.50 +/- 0.2 mmol/L, respectively. Anova < 0.05). The MUFA-rich diet improved insulin sensitivity, as indicated by lower homeostasis model analysis-insulin resistance (HOMA-ir), compared with CHO-rich and high-SAT diets (2.32 +/- 0.3, 2.52 +/- 0.4, 2.72 +/- 0.4, respectively, Anova < 0.01). After a MUFA-rich and high-SAT breakfasts (443 kcal) the postprandial integrated area under curve (AUC) of glucose and insulin were lowered compared with isocaloric CHO-rich breakfast (7.8 +/- 1.3, 5.84 +/- 1.2, 11.9 +/- 2.7 mmol . 180 min/L, Anova < 0.05; and 1004 +/- 147, 1253 +/- 140, 2667 +/- 329 pmol . 180 min/L, Anova <0.01, respectively); while the integrated glucagon-like peptide-1 response increased with MUFA and SAT breakfasts compared with isocaloric CHO-rich meals (4.22 +/- 0.7, 4.34 +/- 1.1, 1.85 +/- 1.1, respectively, Anova < 0.05). Fasting and postprandial HDL cholesterol concentrations rose with MUFA-rich diets, and the AUCs of triacylglycerol fell with the CHO-rich diet. Similarly fasting proinsulin (PI) concentration fell, while stimulated ratio PI/I was not changed by MUFA-rich diet.

CONCLUSIONS

Weight maintenance with a MUFA-rich diet improves HOMA-ir and fasting proinsulin levels in insulin-resistant subjects. Ingestion of a virgin olive oil-based breakfast decreased postprandial glucose and insulin concentrations, and increased HDL-C and GLP-1 concentrations as compared with CHO-rich diet.

Authors+Show Affiliations

Lipids and Atherosclerosis Research Unit, University Hospital Reina Sofía, Córdoba, Spain. japaniaguag@yahoo.esNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

17914131

Citation

Paniagua, Juan A., et al. "A MUFA-rich Diet Improves Posprandial Glucose, Lipid and GLP-1 Responses in Insulin-resistant Subjects." Journal of the American College of Nutrition, vol. 26, no. 5, 2007, pp. 434-44.
Paniagua JA, de la Sacristana AG, Sánchez E, et al. A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. J Am Coll Nutr. 2007;26(5):434-44.
Paniagua, J. A., de la Sacristana, A. G., Sánchez, E., Romero, I., Vidal-Puig, A., Berral, F. J., Escribano, A., Moyano, M. J., Peréz-Martinez, P., López-Miranda, J., & Pérez-Jiménez, F. (2007). A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. Journal of the American College of Nutrition, 26(5), 434-44.
Paniagua JA, et al. A MUFA-rich Diet Improves Posprandial Glucose, Lipid and GLP-1 Responses in Insulin-resistant Subjects. J Am Coll Nutr. 2007;26(5):434-44. PubMed PMID: 17914131.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. AU - Paniagua,Juan A, AU - de la Sacristana,Angel Gallego, AU - Sánchez,Esther, AU - Romero,Inmaculada, AU - Vidal-Puig,Antonio, AU - Berral,Francisco J, AU - Escribano,Antonio, AU - Moyano,Maria José, AU - Peréz-Martinez,Pablo, AU - López-Miranda,José, AU - Pérez-Jiménez,Francisco, PY - 2007/10/5/pubmed PY - 2007/12/7/medline PY - 2007/10/5/entrez SP - 434 EP - 44 JF - Journal of the American College of Nutrition JO - J Am Coll Nutr VL - 26 IS - 5 N2 - OBJECTIVE: To study the effects of three weight-maintenance diets with different macronutrient composition on carbohydrate, lipid metabolism, insulin and incretin levels in insulin-resistant subjects. METHODS: A prospective study was performed in eleven (7 W, 4 M) offspring of obese and type 2 diabetes patients. Subjects had a BMI > 25 Kg/m2, waist circumference (men/women) > 102/88, HBA1c < 6.5% and were regarded as insulin-resistant after an OGTT (Matsuda ISIm <4). They were randomly divided into three groups and underwent three dietary periods each of 28 days in a crossover design: a) diet high in saturated fat (SAT), b) diet rich in monounsaturated fat (MUFA; Mediterranean diet) and c) diet rich in carbohydrate (CHO). RESULTS: Body weight and resting energy expenditure did not changed during the three dietary periods. Fasting serum glucose concentrations fell during MUFA-rich and CHO-rich diets compared with high-SAT diets (5.02 +/- 0.1, 5.03 +/- 0.1, 5.50 +/- 0.2 mmol/L, respectively. Anova < 0.05). The MUFA-rich diet improved insulin sensitivity, as indicated by lower homeostasis model analysis-insulin resistance (HOMA-ir), compared with CHO-rich and high-SAT diets (2.32 +/- 0.3, 2.52 +/- 0.4, 2.72 +/- 0.4, respectively, Anova < 0.01). After a MUFA-rich and high-SAT breakfasts (443 kcal) the postprandial integrated area under curve (AUC) of glucose and insulin were lowered compared with isocaloric CHO-rich breakfast (7.8 +/- 1.3, 5.84 +/- 1.2, 11.9 +/- 2.7 mmol . 180 min/L, Anova < 0.05; and 1004 +/- 147, 1253 +/- 140, 2667 +/- 329 pmol . 180 min/L, Anova <0.01, respectively); while the integrated glucagon-like peptide-1 response increased with MUFA and SAT breakfasts compared with isocaloric CHO-rich meals (4.22 +/- 0.7, 4.34 +/- 1.1, 1.85 +/- 1.1, respectively, Anova < 0.05). Fasting and postprandial HDL cholesterol concentrations rose with MUFA-rich diets, and the AUCs of triacylglycerol fell with the CHO-rich diet. Similarly fasting proinsulin (PI) concentration fell, while stimulated ratio PI/I was not changed by MUFA-rich diet. CONCLUSIONS: Weight maintenance with a MUFA-rich diet improves HOMA-ir and fasting proinsulin levels in insulin-resistant subjects. Ingestion of a virgin olive oil-based breakfast decreased postprandial glucose and insulin concentrations, and increased HDL-C and GLP-1 concentrations as compared with CHO-rich diet. SN - 0731-5724 UR - https://www.unboundmedicine.com/medline/citation/17914131/A_MUFA_rich_diet_improves_posprandial_glucose_lipid_and_GLP_1_responses_in_insulin_resistant_subjects_ L2 - https://www.tandfonline.com/doi/full/10.1080/07315724.2007.10719633 DB - PRIME DP - Unbound Medicine ER -