Tags

Type your tag names separated by a space and hit enter

Repair and regeneration of osteochondral defects in the articular joints.
Biomol Eng. 2007 Nov; 24(5):489-95.BE

Abstract

People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.

Authors+Show Affiliations

Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, Warszawa 02-507, Poland. Wojciech.Swieszkowski@materials.plNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Review

Language

eng

PubMed ID

17931965

Citation

Swieszkowski, Wojciech, et al. "Repair and Regeneration of Osteochondral Defects in the Articular Joints." Biomolecular Engineering, vol. 24, no. 5, 2007, pp. 489-95.
Swieszkowski W, Tuan BH, Kurzydlowski KJ, et al. Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng. 2007;24(5):489-95.
Swieszkowski, W., Tuan, B. H., Kurzydlowski, K. J., & Hutmacher, D. W. (2007). Repair and regeneration of osteochondral defects in the articular joints. Biomolecular Engineering, 24(5), 489-95.
Swieszkowski W, et al. Repair and Regeneration of Osteochondral Defects in the Articular Joints. Biomol Eng. 2007;24(5):489-95. PubMed PMID: 17931965.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Repair and regeneration of osteochondral defects in the articular joints. AU - Swieszkowski,Wojciech, AU - Tuan,Barnabas Ho Saey, AU - Kurzydlowski,Krzysztof J, AU - Hutmacher,Dietmar W, Y1 - 2007/08/07/ PY - 2007/10/13/pubmed PY - 2008/3/7/medline PY - 2007/10/13/entrez SP - 489 EP - 95 JF - Biomolecular engineering JO - Biomol Eng VL - 24 IS - 5 N2 - People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies. SN - 1389-0344 UR - https://www.unboundmedicine.com/medline/citation/17931965/Repair_and_regeneration_of_osteochondral_defects_in_the_articular_joints_ DB - PRIME DP - Unbound Medicine ER -