Tags

Type your tag names separated by a space and hit enter

Discriminative protection against hydroxyl and superoxide anion radicals by quercetin in human leucocytes in vitro.
Toxicol In Vitro. 2008 Mar; 22(2):301-7.TV

Abstract

Antioxidants play a vital role in the cellular protection against oxidative damage. Quercetin is a well-investigated antioxidant and known to be able to protect against cellular oxidative DNA damage. In this study, we tried to relate the protection by quercetin pre-treatment against oxidative DNA damage in human leucocytes in vitro to the interaction of quercetin in solution with hydroxyl and superoxide anion radicals as measured by electron spin resonance (ESR) spectrometry, using DMPO as a spin trap. Further, scavenging capacity of quercetin-treated leucocytes in vitro was evaluated by ESR spectrometry. Quercetin appears capable of protecting human leucocytes against oxidative DNA damage caused by hydrogen peroxide in a dose-dependent manner. The protection of leucocytes against superoxides is ambiguous. Incubation concentrations of quercetin (1, 10, and 50 microM) reduced levels of superoxide-induced oxidative DNA damage, while at 100 microM the amount of damage was increased. These results are supported by ESR-findings on quercetin in solution, also showing a prooxidant effect at 100 microM. ESR spectroscopy showed rate constant values for the reaction kinetics of quercetin in lowering iron-dependent hydroxyl radical formation and NADH-dependent superoxide anion formation of respectively 3.2 x 10(12)M(-1)s(-1) and 1.1 x 10(4)M(-1)s(-1). This shows that quercetin is a more potent inhibitor of hydroxyl radical formation than a scavenger of superoxide anions.

Authors+Show Affiliations

Department of Health Risk Analysis and Toxicology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

17959353

Citation

Wilms, Lonneke C., et al. "Discriminative Protection Against Hydroxyl and Superoxide Anion Radicals By Quercetin in Human Leucocytes in Vitro." Toxicology in Vitro : an International Journal Published in Association With BIBRA, vol. 22, no. 2, 2008, pp. 301-7.
Wilms LC, Kleinjans JC, Moonen EJ, et al. Discriminative protection against hydroxyl and superoxide anion radicals by quercetin in human leucocytes in vitro. Toxicol In Vitro. 2008;22(2):301-7.
Wilms, L. C., Kleinjans, J. C., Moonen, E. J., & Briedé, J. J. (2008). Discriminative protection against hydroxyl and superoxide anion radicals by quercetin in human leucocytes in vitro. Toxicology in Vitro : an International Journal Published in Association With BIBRA, 22(2), 301-7.
Wilms LC, et al. Discriminative Protection Against Hydroxyl and Superoxide Anion Radicals By Quercetin in Human Leucocytes in Vitro. Toxicol In Vitro. 2008;22(2):301-7. PubMed PMID: 17959353.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Discriminative protection against hydroxyl and superoxide anion radicals by quercetin in human leucocytes in vitro. AU - Wilms,Lonneke C, AU - Kleinjans,Jos C S, AU - Moonen,Edwin J C, AU - Briedé,Jacob J, Y1 - 2007/09/14/ PY - 2007/06/04/received PY - 2007/09/03/revised PY - 2007/09/05/accepted PY - 2007/10/26/pubmed PY - 2008/6/28/medline PY - 2007/10/26/entrez SP - 301 EP - 7 JF - Toxicology in vitro : an international journal published in association with BIBRA JO - Toxicol In Vitro VL - 22 IS - 2 N2 - Antioxidants play a vital role in the cellular protection against oxidative damage. Quercetin is a well-investigated antioxidant and known to be able to protect against cellular oxidative DNA damage. In this study, we tried to relate the protection by quercetin pre-treatment against oxidative DNA damage in human leucocytes in vitro to the interaction of quercetin in solution with hydroxyl and superoxide anion radicals as measured by electron spin resonance (ESR) spectrometry, using DMPO as a spin trap. Further, scavenging capacity of quercetin-treated leucocytes in vitro was evaluated by ESR spectrometry. Quercetin appears capable of protecting human leucocytes against oxidative DNA damage caused by hydrogen peroxide in a dose-dependent manner. The protection of leucocytes against superoxides is ambiguous. Incubation concentrations of quercetin (1, 10, and 50 microM) reduced levels of superoxide-induced oxidative DNA damage, while at 100 microM the amount of damage was increased. These results are supported by ESR-findings on quercetin in solution, also showing a prooxidant effect at 100 microM. ESR spectroscopy showed rate constant values for the reaction kinetics of quercetin in lowering iron-dependent hydroxyl radical formation and NADH-dependent superoxide anion formation of respectively 3.2 x 10(12)M(-1)s(-1) and 1.1 x 10(4)M(-1)s(-1). This shows that quercetin is a more potent inhibitor of hydroxyl radical formation than a scavenger of superoxide anions. SN - 0887-2333 UR - https://www.unboundmedicine.com/medline/citation/17959353/Discriminative_protection_against_hydroxyl_and_superoxide_anion_radicals_by_quercetin_in_human_leucocytes_in_vitro_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0887-2333(07)00246-9 DB - PRIME DP - Unbound Medicine ER -