Tags

Type your tag names separated by a space and hit enter

Energy imbalance underlying the development of childhood obesity.
Obesity (Silver Spring). 2007 Dec; 15(12):3056-66.O

Abstract

OBJECTIVE

To develop a model based on empirical data and human energetics to predict the total energy cost of weight gain and obligatory increase in energy intake and/or decrease in physical activity level associated with weight gain in children and adolescents.

RESEARCH METHODS AND PROCEDURES

One-year changes in weight and body composition and basal metabolic rate (BMR) were measured in 488 Hispanic children and adolescents. Fat-free mass (FFM) and fat mass (FM) were measured by DXA and BMR by calorimetry. Model specifications include the following: body mass (BM) = FFM + FM, each with a specific energy content, cff (1.07 kcal/g FFM) and cf (9.25 kcal/g FM), basal energy expenditure (EE), kff and kf, and energetic conversion efficiency, eff (0.42) for FFM and ef (0.85) for FM. Total energy cost of weight gain is equal to the sum of energy storage, EE associated with increased BM, conversion energy (CE), and diet-induced EE (DIEE).

RESULTS

Sex- and Tanner stage-specific values are indicated for the basal EE of FFM (kff) and the fat fraction in added tissue (fr). Total energy cost of weight gain is partitioned into energy storage (24% to 36%), increase in EE (40% to 57%), CE (8% to 13%), and DIEE (10%). Observed median (10th to 90th percentile) weight gain of 6.1 kg/yr (2.4 to 11.4 kg/yr) corresponds at physical activity level (PAL) = 1.5, 1.75, and 2.0 to a total energy cost of weight gain of 244 (93 to 448 kcal/d), 267 (101 to 485 kcal/d), and 290 kcal/d (110 to 527 kcal/d), respectively, and to a total energy intake of 2695 (1890 to 3730), 3127 (2191 to 4335), and 3551 (2487 to 4930) kcal/d, respectively. If weight gain is caused by a change in PAL alone and PAL(0) = 1.5 at baseline t = 0, the model indicates a drop in PAL of 0.22 (0.08 to 0.34) units, which is equivalent to 60 (18 to 105) min/d of walking at 2.5 mph.

DISCUSSION

Halting the development or progression of childhood obesity, as observed in these Hispanic children and adolescents, by counteracting its total energy costs will require a sizable decrease in energy intake and/or reciprocal increase in physical activity.

Authors+Show Affiliations

USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA. nbutte@bcm.eduNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

18198315

Citation

Butte, Nancy F., et al. "Energy Imbalance Underlying the Development of Childhood Obesity." Obesity (Silver Spring, Md.), vol. 15, no. 12, 2007, pp. 3056-66.
Butte NF, Christiansen E, Sørensen TI. Energy imbalance underlying the development of childhood obesity. Obesity (Silver Spring). 2007;15(12):3056-66.
Butte, N. F., Christiansen, E., & Sørensen, T. I. (2007). Energy imbalance underlying the development of childhood obesity. Obesity (Silver Spring, Md.), 15(12), 3056-66. https://doi.org/10.1038/oby.2007.364
Butte NF, Christiansen E, Sørensen TI. Energy Imbalance Underlying the Development of Childhood Obesity. Obesity (Silver Spring). 2007;15(12):3056-66. PubMed PMID: 18198315.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Energy imbalance underlying the development of childhood obesity. AU - Butte,Nancy F, AU - Christiansen,Edmund, AU - Sørensen,Thorkild I A, PY - 2008/1/17/pubmed PY - 2008/4/9/medline PY - 2008/1/17/entrez SP - 3056 EP - 66 JF - Obesity (Silver Spring, Md.) JO - Obesity (Silver Spring) VL - 15 IS - 12 N2 - OBJECTIVE: To develop a model based on empirical data and human energetics to predict the total energy cost of weight gain and obligatory increase in energy intake and/or decrease in physical activity level associated with weight gain in children and adolescents. RESEARCH METHODS AND PROCEDURES: One-year changes in weight and body composition and basal metabolic rate (BMR) were measured in 488 Hispanic children and adolescents. Fat-free mass (FFM) and fat mass (FM) were measured by DXA and BMR by calorimetry. Model specifications include the following: body mass (BM) = FFM + FM, each with a specific energy content, cff (1.07 kcal/g FFM) and cf (9.25 kcal/g FM), basal energy expenditure (EE), kff and kf, and energetic conversion efficiency, eff (0.42) for FFM and ef (0.85) for FM. Total energy cost of weight gain is equal to the sum of energy storage, EE associated with increased BM, conversion energy (CE), and diet-induced EE (DIEE). RESULTS: Sex- and Tanner stage-specific values are indicated for the basal EE of FFM (kff) and the fat fraction in added tissue (fr). Total energy cost of weight gain is partitioned into energy storage (24% to 36%), increase in EE (40% to 57%), CE (8% to 13%), and DIEE (10%). Observed median (10th to 90th percentile) weight gain of 6.1 kg/yr (2.4 to 11.4 kg/yr) corresponds at physical activity level (PAL) = 1.5, 1.75, and 2.0 to a total energy cost of weight gain of 244 (93 to 448 kcal/d), 267 (101 to 485 kcal/d), and 290 kcal/d (110 to 527 kcal/d), respectively, and to a total energy intake of 2695 (1890 to 3730), 3127 (2191 to 4335), and 3551 (2487 to 4930) kcal/d, respectively. If weight gain is caused by a change in PAL alone and PAL(0) = 1.5 at baseline t = 0, the model indicates a drop in PAL of 0.22 (0.08 to 0.34) units, which is equivalent to 60 (18 to 105) min/d of walking at 2.5 mph. DISCUSSION: Halting the development or progression of childhood obesity, as observed in these Hispanic children and adolescents, by counteracting its total energy costs will require a sizable decrease in energy intake and/or reciprocal increase in physical activity. SN - 1930-7381 UR - https://www.unboundmedicine.com/medline/citation/18198315/Energy_imbalance_underlying_the_development_of_childhood_obesity_ L2 - https://doi.org/10.1038/oby.2007.364 DB - PRIME DP - Unbound Medicine ER -