Tags

Type your tag names separated by a space and hit enter

Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy.
Eur J Pain. 2008 Nov; 12(8):1031-9.EJ

Abstract

EphrinB-EphB receptor signaling plays diverse roles during development, but recently has been implicated in synaptic plasticity in the matured nervous system and in pain processes. The present study investigated the correlation between expression of ephrinB and EphB receptor proteins and chronic constriction injury (CCI) of the sciatic nerve and dorsal rhizotomy (DR) in dorsal root ganglion (DRG) and spinal cord (SC); and interaction of CCI and DR on expression of these signals. Adult, male Sprague-Dawley rats were employed and thermal sensitivity was determined in the sham operated CCI and DR rats. Western blot and immunobiochemistry analysis and immunofluorescence staining techniques were used to detect the expression and location of the ephrinB-EphB receptor proteins in DRG and SC. The results showed that expression of ephrinB1 and EphB1 receptor proteins was significantly upregulated in DRG and SC in a time-dependent manner corresponding to the development of thermal hyperalgesia after CCI. The increased expression is predominately located in the medium- and small-sized DRG neurons, the superficial layers of spinal dorsal horn (DH) neurons, and the IB4 positive nociceptive terminals. DR increases ephrinB1 in DRG, not SC and EphB receptor in SC, not DRG. DR suppressed CCI-induced upregulation of ephrinB1 in SC and EphB1 receptor in DRG and SC. These findings indicate that ephrinB-EphB receptor activation and redistribution in DRG and DH neurons after nerve injury could contribute to neuropathic pain. This study may also provide a new mechanism underlying DR-induced analgesia in clinic.

Authors+Show Affiliations

Department of Neurobiology, Parker University Research Institute, Dallas, TX 75229, USA. song@parkercc.eduNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

18321739

Citation

Song, Xue-Jun, et al. "Upregulation and Redistribution of ephrinB and EphB Receptor in Dorsal Root Ganglion and Spinal Dorsal Horn Neurons After Peripheral Nerve Injury and Dorsal Rhizotomy." European Journal of Pain (London, England), vol. 12, no. 8, 2008, pp. 1031-9.
Song XJ, Cao JL, Li HC, et al. Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy. Eur J Pain. 2008;12(8):1031-9.
Song, X. J., Cao, J. L., Li, H. C., Zheng, J. H., Song, X. S., & Xiong, L. Z. (2008). Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy. European Journal of Pain (London, England), 12(8), 1031-9. https://doi.org/10.1016/j.ejpain.2008.01.011
Song XJ, et al. Upregulation and Redistribution of ephrinB and EphB Receptor in Dorsal Root Ganglion and Spinal Dorsal Horn Neurons After Peripheral Nerve Injury and Dorsal Rhizotomy. Eur J Pain. 2008;12(8):1031-9. PubMed PMID: 18321739.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy. AU - Song,Xue-Jun, AU - Cao,Jun-Li, AU - Li,Hao-Chuan, AU - Zheng,Ji-Hong, AU - Song,Xue-Song, AU - Xiong,Li-Ze, Y1 - 2008/03/05/ PY - 2007/11/02/received PY - 2008/01/16/revised PY - 2008/01/25/accepted PY - 2008/3/7/pubmed PY - 2008/10/31/medline PY - 2008/3/7/entrez SP - 1031 EP - 9 JF - European journal of pain (London, England) JO - Eur J Pain VL - 12 IS - 8 N2 - EphrinB-EphB receptor signaling plays diverse roles during development, but recently has been implicated in synaptic plasticity in the matured nervous system and in pain processes. The present study investigated the correlation between expression of ephrinB and EphB receptor proteins and chronic constriction injury (CCI) of the sciatic nerve and dorsal rhizotomy (DR) in dorsal root ganglion (DRG) and spinal cord (SC); and interaction of CCI and DR on expression of these signals. Adult, male Sprague-Dawley rats were employed and thermal sensitivity was determined in the sham operated CCI and DR rats. Western blot and immunobiochemistry analysis and immunofluorescence staining techniques were used to detect the expression and location of the ephrinB-EphB receptor proteins in DRG and SC. The results showed that expression of ephrinB1 and EphB1 receptor proteins was significantly upregulated in DRG and SC in a time-dependent manner corresponding to the development of thermal hyperalgesia after CCI. The increased expression is predominately located in the medium- and small-sized DRG neurons, the superficial layers of spinal dorsal horn (DH) neurons, and the IB4 positive nociceptive terminals. DR increases ephrinB1 in DRG, not SC and EphB receptor in SC, not DRG. DR suppressed CCI-induced upregulation of ephrinB1 in SC and EphB1 receptor in DRG and SC. These findings indicate that ephrinB-EphB receptor activation and redistribution in DRG and DH neurons after nerve injury could contribute to neuropathic pain. This study may also provide a new mechanism underlying DR-induced analgesia in clinic. SN - 1532-2149 UR - https://www.unboundmedicine.com/medline/citation/18321739/Upregulation_and_redistribution_of_ephrinB_and_EphB_receptor_in_dorsal_root_ganglion_and_spinal_dorsal_horn_neurons_after_peripheral_nerve_injury_and_dorsal_rhizotomy_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S1090-3801(08)00019-0 DB - PRIME DP - Unbound Medicine ER -