Tags

Type your tag names separated by a space and hit enter

Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching.
IEEE Trans Nanobioscience 2008; 7(1):80-90IT

Abstract

The deformation and mechanical properties of the erythrocytes are studied experimentally and numerically. For the experimental part, an osmotic swollen spherical erythrocyte was attached with a pair of silica beads, and then stretched at two opposite ends by a laser trap. The purpose of this experiment is to find the empirical correlation between the stretching force and the cell deformation in terms of the transverse strain, which is a measure of the change of radius in a spherical cell along its equator. Experimental results show the cell shape become more oblate, elliptic as the stretching force increases. On the numerical front, a physical model from the original work by Pamplona and Calladine for the lipsomes was extended to simulate the deformation of the cell membrane. Numerical analyses were performed to solve the nondimensionalized governing equations with proper boundary conditions imposed to simulate the experimental conditions. The simulated results indicate that at high tensile stiffness, the cell can deform into a spindle shape with negative curvature close to the ends of stretch. Finally, the experimental data and the simulated results were correlated through optimization by minimizing their discrepancy at various values of the shear stiffness. The optimal value of shear stiffness was found in the range of 2.35 approximately 4.29 10(-6) N.m(-1), which is comparable with those values reported in the literature.

Authors+Show Affiliations

Nanyang Technological University, Singapore 639798, Singapore. mcli@ntu.edu.sgNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

18334458

Citation

Li, C, et al. "Correlations Between the Experimental and Numerical Investigations On the Mechanical Properties of Erythrocyte By Laser Stretching." IEEE Transactions On Nanobioscience, vol. 7, no. 1, 2008, pp. 80-90.
Li C, Liu YP, Liu KK, et al. Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching. IEEE Trans Nanobioscience. 2008;7(1):80-90.
Li, C., Liu, Y. P., Liu, K. K., & Lai, A. K. (2008). Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching. IEEE Transactions On Nanobioscience, 7(1), pp. 80-90. doi:10.1109/TNB.2008.2000152.
Li C, et al. Correlations Between the Experimental and Numerical Investigations On the Mechanical Properties of Erythrocyte By Laser Stretching. IEEE Trans Nanobioscience. 2008;7(1):80-90. PubMed PMID: 18334458.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching. AU - Li,C, AU - Liu,Y P, AU - Liu,K K, AU - Lai,A K, PY - 2008/3/13/pubmed PY - 2008/5/21/medline PY - 2008/3/13/entrez SP - 80 EP - 90 JF - IEEE transactions on nanobioscience JO - IEEE Trans Nanobioscience VL - 7 IS - 1 N2 - The deformation and mechanical properties of the erythrocytes are studied experimentally and numerically. For the experimental part, an osmotic swollen spherical erythrocyte was attached with a pair of silica beads, and then stretched at two opposite ends by a laser trap. The purpose of this experiment is to find the empirical correlation between the stretching force and the cell deformation in terms of the transverse strain, which is a measure of the change of radius in a spherical cell along its equator. Experimental results show the cell shape become more oblate, elliptic as the stretching force increases. On the numerical front, a physical model from the original work by Pamplona and Calladine for the lipsomes was extended to simulate the deformation of the cell membrane. Numerical analyses were performed to solve the nondimensionalized governing equations with proper boundary conditions imposed to simulate the experimental conditions. The simulated results indicate that at high tensile stiffness, the cell can deform into a spindle shape with negative curvature close to the ends of stretch. Finally, the experimental data and the simulated results were correlated through optimization by minimizing their discrepancy at various values of the shear stiffness. The optimal value of shear stiffness was found in the range of 2.35 approximately 4.29 10(-6) N.m(-1), which is comparable with those values reported in the literature. SN - 1536-1241 UR - https://www.unboundmedicine.com/medline/citation/18334458/Correlations_between_the_experimental_and_numerical_investigations_on_the_mechanical_properties_of_erythrocyte_by_laser_stretching_ L2 - https://dx.doi.org/10.1109/TNB.2008.2000152 DB - PRIME DP - Unbound Medicine ER -