Rotational motion in sensorless freehand three-dimensional ultrasound.Ultrasonics. 2008 Sep; 48(5):412-22.U
Freehand three-dimensional ultrasound is usually acquired with a position sensor attached to the ultrasound probe. However, position sensors can be expensive, obtrusive and difficult to calibrate. For this reason, there has been much research on alternative, image-based techniques, with in-plane motion tracked using conventional image registration methods, and out-of-plane motion inferred from the decorrelation between nearby B-scans. However, since out-of-plane motion is not the only source of decorrelation, image-based positions determined in this way suffer from cumulative drift errors. In this paper, we consider the effect of probe rotation on correlation and how this affects the position estimates. We then present a novel technique to compensate for out-of-plane rotations, by making use of orientation measurements from an unobtrusive sensor. Using simulations and in vitro experiments, we demonstrate that the technique is able to reduce the drift error in elevational positioning by 57% on average.