Tags

Type your tag names separated by a space and hit enter

Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a host-parasite animal model.
Mol Immunol. 2008 Jun; 45(11):3178-89.MI

Abstract

Tyrosine nitration is a hallmark for nitrosative stress caused by the release of reactive oxygen and nitrogen species by activated macrophages and neutrophilic granulocytes at sites of inflammation and infection. In the first part of the study, we used an informative host-parasite animal model to describe the differential contribution of macrophages and neutrophilic granulocytes to in vivo tissue nitration. To this purpose common carp (Cyprinus carpio) were infected with the extracellular blood parasite Trypanoplasma borreli (Kinetoplastida). After infection, serum nitrite levels significantly increased concurrently to the upregulation of inducible nitric oxide synthase (iNOS) gene expression. Tyrosine nitration, as measured by immunohistochemistry using an anti-nitrotyrosine antibody, dramatically increased in tissues from parasite-infected fish, demonstrating that elevated NO production during T. borreli infection coincides with nitrosative stress in immunologically active tissues. The combined use of an anti-nitrotyrosine antibody with a panel of monoclonal antibodies specific for several carp leukocytes, revealed that fish neutrophilic granulocytes strongly contribute to in vivo tissue nitration most likely through both, a peroxynitrite- and an MPO-mediated mechanism. Conversely, fish macrophages, by restricting the presence of radicals and enzymes to their intraphagosomal compartment, contribute to a much lesser extent to in vivo tissue nitration. In the second part of the study, we examined the effects of nitrosative stress on the parasite itself. Peroxynitrite, but not NO donor substances, exerted strong cytotoxicity on the parasite in vitro. In vivo, however, nitration of T. borreli was limited if not absent despite the presence of parasites in highly nitrated tissue areas. Further, we investigated parasite susceptibility to the human anti-trypanosome drug Melarsoprol (Arsobal), which directly interferes with the parasite-specific trypanothione anti-oxidant system. Arsobal treatment strongly decreased T. borreli viability both, in vitro and in vivo. All together, our data suggest an evolutionary conservation in modern bony fish of the function of neutrophilic granulocytes and macrophages in the nitration process and support the common carp as a suitable animal model for investigations on nitrosative stress in host-parasite interactions. The potential of T. borreli to serve as an alternative tool for pharmacological studies on human anti-trypanosome drugs is discussed.

Authors+Show Affiliations

Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

18406465

Citation

Forlenza, Maria, et al. "Differential Contribution of Neutrophilic Granulocytes and Macrophages to Nitrosative Stress in a Host-parasite Animal Model." Molecular Immunology, vol. 45, no. 11, 2008, pp. 3178-89.
Forlenza M, Scharsack JP, Kachamakova NM, et al. Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a host-parasite animal model. Mol Immunol. 2008;45(11):3178-89.
Forlenza, M., Scharsack, J. P., Kachamakova, N. M., Taverne-Thiele, A. J., Rombout, J. H., & Wiegertjes, G. F. (2008). Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a host-parasite animal model. Molecular Immunology, 45(11), 3178-89. https://doi.org/10.1016/j.molimm.2008.02.025
Forlenza M, et al. Differential Contribution of Neutrophilic Granulocytes and Macrophages to Nitrosative Stress in a Host-parasite Animal Model. Mol Immunol. 2008;45(11):3178-89. PubMed PMID: 18406465.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a host-parasite animal model. AU - Forlenza,Maria, AU - Scharsack,Joern P, AU - Kachamakova,Neli M, AU - Taverne-Thiele,Anja J, AU - Rombout,Jan H W M, AU - Wiegertjes,Geert F, Y1 - 2008/04/14/ PY - 2008/01/16/received PY - 2008/02/29/accepted PY - 2008/4/15/pubmed PY - 2008/7/30/medline PY - 2008/4/15/entrez SP - 3178 EP - 89 JF - Molecular immunology JO - Mol Immunol VL - 45 IS - 11 N2 - Tyrosine nitration is a hallmark for nitrosative stress caused by the release of reactive oxygen and nitrogen species by activated macrophages and neutrophilic granulocytes at sites of inflammation and infection. In the first part of the study, we used an informative host-parasite animal model to describe the differential contribution of macrophages and neutrophilic granulocytes to in vivo tissue nitration. To this purpose common carp (Cyprinus carpio) were infected with the extracellular blood parasite Trypanoplasma borreli (Kinetoplastida). After infection, serum nitrite levels significantly increased concurrently to the upregulation of inducible nitric oxide synthase (iNOS) gene expression. Tyrosine nitration, as measured by immunohistochemistry using an anti-nitrotyrosine antibody, dramatically increased in tissues from parasite-infected fish, demonstrating that elevated NO production during T. borreli infection coincides with nitrosative stress in immunologically active tissues. The combined use of an anti-nitrotyrosine antibody with a panel of monoclonal antibodies specific for several carp leukocytes, revealed that fish neutrophilic granulocytes strongly contribute to in vivo tissue nitration most likely through both, a peroxynitrite- and an MPO-mediated mechanism. Conversely, fish macrophages, by restricting the presence of radicals and enzymes to their intraphagosomal compartment, contribute to a much lesser extent to in vivo tissue nitration. In the second part of the study, we examined the effects of nitrosative stress on the parasite itself. Peroxynitrite, but not NO donor substances, exerted strong cytotoxicity on the parasite in vitro. In vivo, however, nitration of T. borreli was limited if not absent despite the presence of parasites in highly nitrated tissue areas. Further, we investigated parasite susceptibility to the human anti-trypanosome drug Melarsoprol (Arsobal), which directly interferes with the parasite-specific trypanothione anti-oxidant system. Arsobal treatment strongly decreased T. borreli viability both, in vitro and in vivo. All together, our data suggest an evolutionary conservation in modern bony fish of the function of neutrophilic granulocytes and macrophages in the nitration process and support the common carp as a suitable animal model for investigations on nitrosative stress in host-parasite interactions. The potential of T. borreli to serve as an alternative tool for pharmacological studies on human anti-trypanosome drugs is discussed. SN - 0161-5890 UR - https://www.unboundmedicine.com/medline/citation/18406465/Differential_contribution_of_neutrophilic_granulocytes_and_macrophages_to_nitrosative_stress_in_a_host_parasite_animal_model_ DB - PRIME DP - Unbound Medicine ER -