Tags

Type your tag names separated by a space and hit enter

Lentiviral vector-mediated reporter gene expression in avulsed spinal ventral root is short-term, but is prolonged using an immune "stealth" transgene.
Restor Neurol Neurosci. 2007; 25(5-6):585-99.RN

Abstract

PURPOSE

Spinal root avulsions result in paralysis of the upper and/or lower extremities. Implanting a peripheral nerve bridge or reinsertion of the avulsed roots in the spinal cord are surgical strategies that lead to some degree of functional recovery. In the current study lentiviral (LV) vector-mediated gene transfer of a green fluorescent protein (GFP) reporter gene was used to study the feasibility of gene therapy in the reimplanted root to further promote regeneration of motor axons.

METHODS

A total of 68 female Wistar rats underwent unilateral root avulsion of the L4, L5 and L6 ventral lumbar roots. From 23 rats intercostal nerves were dissected before ventral root avulsion surgery, injected with a lentiviral vector encoding GFP (LV-GFP) and inserted between the spinal cord and avulsed rootlet. In the remaining 45 rats, the avulsed ventral root was injected with either LV-GFP or a lentiviral vector encoding a fusion between a GlyAla repeat and GFP (LV-GArGFP), and reinserted into the spinal cord. Expression of GFP was evaluated at 1,2, 4 and 10 weeks, and one group at 4 months.

RESULTS

LV-GFP transduction of either nerve implants or reimplanted ventral roots revealed high GFP expression during the first 2 post-lesion weeks, but virtually no expression at 4 weeks. Since this reduction coincided with the appearance of mononuclear cells at the repair site, an immune response against GFP may have occurred. In a subsequent experiment reimplanted ventral roots were transduced with a vector encoding GFP fused with the GlyAla repeat of Epstein-Barr virus Nuclear Antigen 1 known to prevent generation of antigenic peptides from transgene products. Expression of this "stealth" gene persisted for at least 4 months in the reimplanted root.

CONCLUSION

Thus persistent transgene expression can be achieved with non-immunogenic transgene products in reimplanted ventral roots. This demonstrates the feasibility of combining neurosurgical repair with LV vector-mediated gene therapy. The current approach will be used in future experiments with LV vectors encoding neurotrophic factors to enhance the regeneration of spinal motor neurons after traumatic avulsion of spinal nerve roots.

Authors+Show Affiliations

Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam Zuidoost, the Netherlands.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

18418947

Citation

Hendriks, William T J., et al. "Lentiviral Vector-mediated Reporter Gene Expression in Avulsed Spinal Ventral Root Is Short-term, but Is Prolonged Using an Immune "stealth" Transgene." Restorative Neurology and Neuroscience, vol. 25, no. 5-6, 2007, pp. 585-99.
Hendriks WT, Eggers R, Carlstedt TP, et al. Lentiviral vector-mediated reporter gene expression in avulsed spinal ventral root is short-term, but is prolonged using an immune "stealth" transgene. Restor Neurol Neurosci. 2007;25(5-6):585-99.
Hendriks, W. T., Eggers, R., Carlstedt, T. P., Zaldumbide, A., Tannemaat, M. R., Fallaux, F. J., Hoeben, R. C., Boer, G. J., & Verhaagen, J. (2007). Lentiviral vector-mediated reporter gene expression in avulsed spinal ventral root is short-term, but is prolonged using an immune "stealth" transgene. Restorative Neurology and Neuroscience, 25(5-6), 585-99.
Hendriks WT, et al. Lentiviral Vector-mediated Reporter Gene Expression in Avulsed Spinal Ventral Root Is Short-term, but Is Prolonged Using an Immune "stealth" Transgene. Restor Neurol Neurosci. 2007;25(5-6):585-99. PubMed PMID: 18418947.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Lentiviral vector-mediated reporter gene expression in avulsed spinal ventral root is short-term, but is prolonged using an immune "stealth" transgene. AU - Hendriks,William T J, AU - Eggers,Ruben, AU - Carlstedt,Thomas P, AU - Zaldumbide,Arnaud, AU - Tannemaat,Martijn R, AU - Fallaux,Frits J, AU - Hoeben,Rob C, AU - Boer,Gerard J, AU - Verhaagen,Joost, PY - 2008/4/19/pubmed PY - 2008/6/13/medline PY - 2008/4/19/entrez SP - 585 EP - 99 JF - Restorative neurology and neuroscience JO - Restor. Neurol. Neurosci. VL - 25 IS - 5-6 N2 - PURPOSE: Spinal root avulsions result in paralysis of the upper and/or lower extremities. Implanting a peripheral nerve bridge or reinsertion of the avulsed roots in the spinal cord are surgical strategies that lead to some degree of functional recovery. In the current study lentiviral (LV) vector-mediated gene transfer of a green fluorescent protein (GFP) reporter gene was used to study the feasibility of gene therapy in the reimplanted root to further promote regeneration of motor axons. METHODS: A total of 68 female Wistar rats underwent unilateral root avulsion of the L4, L5 and L6 ventral lumbar roots. From 23 rats intercostal nerves were dissected before ventral root avulsion surgery, injected with a lentiviral vector encoding GFP (LV-GFP) and inserted between the spinal cord and avulsed rootlet. In the remaining 45 rats, the avulsed ventral root was injected with either LV-GFP or a lentiviral vector encoding a fusion between a GlyAla repeat and GFP (LV-GArGFP), and reinserted into the spinal cord. Expression of GFP was evaluated at 1,2, 4 and 10 weeks, and one group at 4 months. RESULTS: LV-GFP transduction of either nerve implants or reimplanted ventral roots revealed high GFP expression during the first 2 post-lesion weeks, but virtually no expression at 4 weeks. Since this reduction coincided with the appearance of mononuclear cells at the repair site, an immune response against GFP may have occurred. In a subsequent experiment reimplanted ventral roots were transduced with a vector encoding GFP fused with the GlyAla repeat of Epstein-Barr virus Nuclear Antigen 1 known to prevent generation of antigenic peptides from transgene products. Expression of this "stealth" gene persisted for at least 4 months in the reimplanted root. CONCLUSION: Thus persistent transgene expression can be achieved with non-immunogenic transgene products in reimplanted ventral roots. This demonstrates the feasibility of combining neurosurgical repair with LV vector-mediated gene therapy. The current approach will be used in future experiments with LV vectors encoding neurotrophic factors to enhance the regeneration of spinal motor neurons after traumatic avulsion of spinal nerve roots. SN - 0922-6028 UR - https://www.unboundmedicine.com/medline/citation/18418947/Lentiviral_vector_mediated_reporter_gene_expression_in_avulsed_spinal_ventral_root_is_short_term_but_is_prolonged_using_an_immune_"stealth"_transgene_ L2 - https://content.iospress.com/openurl?genre=article&issn=0922-6028&volume=25&issue=5-6&spage=585 DB - PRIME DP - Unbound Medicine ER -