Tags

Type your tag names separated by a space and hit enter

Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson's disease.
Brain Res Bull. 2008 Jul 30; 76(5):512-21.BR

Abstract

How deep brain stimulation (DBS) acts and how the brain responds to it remains unclear. To investigate the mechanisms involved, we analyzed changes in local field potentials from the subthalamic area (STN-LFPs) recorded through the deep brain macroelectrode during monopolar DBS of the subthalamic nucleus area (STN-DBS) in a group of eight patients (16 nuclei) with idiopathic Parkinson's disease. Monopolar STN-DBS was delivered through contact 1 and differential LFP recordings were acquired between contacts 0 and 2. The stimulating contact was 0.5 mm away from each recording contact. The power spectral analysis of STN-LFPs showed that during ongoing STN-DBS whereas the power of beta oscillations (8-20 Hz) and high beta oscillations (21-40 Hz) remained unchanged, the power of low-frequency oscillations (1-7 Hz) significantly increased (baseline=0.37+/-0.22; during DBS=7.07+/-15.10, p=0.0003). Despite comparable low-frequency baseline power with and without levodopa, the increase in low-frequency oscillations during STN-DBS was over boosted by pretreatment with levodopa. The low-frequency power increase in STN-LFPs during ongoing STN-DBS could reflect changes induced at basal ganglia network level similar to those elicited by levodopa. In addition, the correlation between the heart beat and the low-frequency oscillations suggests that part of the low-frequency power increase during STN-DBS arises from polarization phenomena around the stimulating electrode. Local polarization might in turn also help to normalize STN hyperactivity in Parkinson's disease.

Authors+Show Affiliations

Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

18534260

Citation

Rossi, L, et al. "Subthalamic Local Field Potential Oscillations During Ongoing Deep Brain Stimulation in Parkinson's Disease." Brain Research Bulletin, vol. 76, no. 5, 2008, pp. 512-21.
Rossi L, Marceglia S, Foffani G, et al. Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson's disease. Brain Res Bull. 2008;76(5):512-21.
Rossi, L., Marceglia, S., Foffani, G., Cogiamanian, F., Tamma, F., Rampini, P., Barbieri, S., Bracchi, F., & Priori, A. (2008). Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson's disease. Brain Research Bulletin, 76(5), 512-21. https://doi.org/10.1016/j.brainresbull.2008.01.023
Rossi L, et al. Subthalamic Local Field Potential Oscillations During Ongoing Deep Brain Stimulation in Parkinson's Disease. Brain Res Bull. 2008 Jul 30;76(5):512-21. PubMed PMID: 18534260.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson's disease. AU - Rossi,L, AU - Marceglia,S, AU - Foffani,G, AU - Cogiamanian,F, AU - Tamma,F, AU - Rampini,P, AU - Barbieri,S, AU - Bracchi,F, AU - Priori,A, Y1 - 2008/02/29/ PY - 2007/12/19/received PY - 2008/01/18/revised PY - 2008/01/19/accepted PY - 2008/6/7/pubmed PY - 2008/9/5/medline PY - 2008/6/7/entrez SP - 512 EP - 21 JF - Brain research bulletin JO - Brain Res Bull VL - 76 IS - 5 N2 - How deep brain stimulation (DBS) acts and how the brain responds to it remains unclear. To investigate the mechanisms involved, we analyzed changes in local field potentials from the subthalamic area (STN-LFPs) recorded through the deep brain macroelectrode during monopolar DBS of the subthalamic nucleus area (STN-DBS) in a group of eight patients (16 nuclei) with idiopathic Parkinson's disease. Monopolar STN-DBS was delivered through contact 1 and differential LFP recordings were acquired between contacts 0 and 2. The stimulating contact was 0.5 mm away from each recording contact. The power spectral analysis of STN-LFPs showed that during ongoing STN-DBS whereas the power of beta oscillations (8-20 Hz) and high beta oscillations (21-40 Hz) remained unchanged, the power of low-frequency oscillations (1-7 Hz) significantly increased (baseline=0.37+/-0.22; during DBS=7.07+/-15.10, p=0.0003). Despite comparable low-frequency baseline power with and without levodopa, the increase in low-frequency oscillations during STN-DBS was over boosted by pretreatment with levodopa. The low-frequency power increase in STN-LFPs during ongoing STN-DBS could reflect changes induced at basal ganglia network level similar to those elicited by levodopa. In addition, the correlation between the heart beat and the low-frequency oscillations suggests that part of the low-frequency power increase during STN-DBS arises from polarization phenomena around the stimulating electrode. Local polarization might in turn also help to normalize STN hyperactivity in Parkinson's disease. SN - 1873-2747 UR - https://www.unboundmedicine.com/medline/citation/18534260/Subthalamic_local_field_potential_oscillations_during_ongoing_deep_brain_stimulation_in_Parkinson's_disease_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0361-9230(08)00022-1 DB - PRIME DP - Unbound Medicine ER -