Tags

Type your tag names separated by a space and hit enter

Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus).
Heredity (Edinb). 2008 Sep; 101(3):247-59.H

Abstract

Despite the recent discovery of significant genetic structuring in a large number of marine organisms, the evolutionary significance of these often minute genetic differences are still poorly understood. To elucidate the adaptive relevance of low genetic differentiation among marine fish populations, we studied expression differences of osmoregulatory and stress genes in genetically weakly differentiated populations of the European flounder (Platichthys flesus), distributed across a natural salinity gradient. Flounders were maintained in a long-term reciprocal transplantation experiment mimicking natural salinities in the North Sea and the Baltic Sea. Applying real-time quantitative PCR and microarray analysis we studied expression of four candidate genes (hsp70, angiotensinogen, Na/K-ATPase-alpha and 5-aminolevulinic acid synthase (ALAS)) in gill, kidney and liver tissues. Genes involved in osmoregulative processes (Na/K-ATPases-alpha and angiotensinogen) showed highly plastic but similar expression in the two populations dependent on environmental salinity. However, we observed a unique sixfold up-regulation of hsp70 in kidney tissue of flounder from the North Sea following long-term acclimation to Baltic salinities. Similarly, significant differences between North Sea and Baltic flounders in expression of ALAS in response to different salinities were found in gill and liver tissue. These findings strongly suggest that gene expression in flounders is shaped by adaptation to local environmental conditions. This identification of adaptive differences in high gene flow marine organisms adds a new dimension to our current understanding of evolutionary processes in the sea and is of paramount importance for identification, protection and sustainable management of marine biodiversity.

Authors+Show Affiliations

Department of Inland Fisheries, Danish Institute for Fisheries Research, Technical University of Denmark, Silkeborg, Denmark. pfl@difres.dkNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

18560442

Citation

Larsen, P F., et al. "Intraspecific Variation in Expression of Candidate Genes for Osmoregulation, Heme Biosynthesis and Stress Resistance Suggests Local Adaptation in European Flounder (Platichthys Flesus)." Heredity, vol. 101, no. 3, 2008, pp. 247-59.
Larsen PF, Nielsen EE, Williams TD, et al. Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus). Heredity (Edinb). 2008;101(3):247-59.
Larsen, P. F., Nielsen, E. E., Williams, T. D., & Loeschcke, V. (2008). Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus). Heredity, 101(3), 247-59. https://doi.org/10.1038/hdy.2008.54
Larsen PF, et al. Intraspecific Variation in Expression of Candidate Genes for Osmoregulation, Heme Biosynthesis and Stress Resistance Suggests Local Adaptation in European Flounder (Platichthys Flesus). Heredity (Edinb). 2008;101(3):247-59. PubMed PMID: 18560442.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus). AU - Larsen,P F, AU - Nielsen,E E, AU - Williams,T D, AU - Loeschcke,V, Y1 - 2008/06/18/ PY - 2008/6/19/pubmed PY - 2008/11/13/medline PY - 2008/6/19/entrez SP - 247 EP - 59 JF - Heredity JO - Heredity (Edinb) VL - 101 IS - 3 N2 - Despite the recent discovery of significant genetic structuring in a large number of marine organisms, the evolutionary significance of these often minute genetic differences are still poorly understood. To elucidate the adaptive relevance of low genetic differentiation among marine fish populations, we studied expression differences of osmoregulatory and stress genes in genetically weakly differentiated populations of the European flounder (Platichthys flesus), distributed across a natural salinity gradient. Flounders were maintained in a long-term reciprocal transplantation experiment mimicking natural salinities in the North Sea and the Baltic Sea. Applying real-time quantitative PCR and microarray analysis we studied expression of four candidate genes (hsp70, angiotensinogen, Na/K-ATPase-alpha and 5-aminolevulinic acid synthase (ALAS)) in gill, kidney and liver tissues. Genes involved in osmoregulative processes (Na/K-ATPases-alpha and angiotensinogen) showed highly plastic but similar expression in the two populations dependent on environmental salinity. However, we observed a unique sixfold up-regulation of hsp70 in kidney tissue of flounder from the North Sea following long-term acclimation to Baltic salinities. Similarly, significant differences between North Sea and Baltic flounders in expression of ALAS in response to different salinities were found in gill and liver tissue. These findings strongly suggest that gene expression in flounders is shaped by adaptation to local environmental conditions. This identification of adaptive differences in high gene flow marine organisms adds a new dimension to our current understanding of evolutionary processes in the sea and is of paramount importance for identification, protection and sustainable management of marine biodiversity. SN - 1365-2540 UR - https://www.unboundmedicine.com/medline/citation/18560442/Intraspecific_variation_in_expression_of_candidate_genes_for_osmoregulation_heme_biosynthesis_and_stress_resistance_suggests_local_adaptation_in_European_flounder__Platichthys_flesus__ L2 - https://www.lens.org/lens/search/patent/list?q=citation_id:18560442 DB - PRIME DP - Unbound Medicine ER -