Tags

Type your tag names separated by a space and hit enter

Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation.
J Physiol. 2008 Aug 15; 586(16):3927-47.JP

Abstract

Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising tool to induce plastic changes that are thought in some cases to reflect N-methyl-d-aspartate-sensitive changes in synaptic efficacy. As in animal experiments, there is some evidence that the sign of rTMS-induced plasticity depends on the prior history of cortical activity, conforming to the Bienenstock-Cooper-Munro (BCM) theory. However, experiments exploring these plastic changes have only examined priming-induced effects on a limited number of rTMS protocols, often using designs in which the priming alone had a larger effect than the principle conditioning protocol. The aim of this study was to introduce a new rTMS protocol that gives a broad range of after-effects from suppression to facilitation and then test how each of these is affected by a priming protocol that on its own has no effect on motor cortical excitability, as indexed by motor-evoked potential (MEP). Repeated trains of four monophasic TMS pulses (quadripulse stimulation: QPS) separated by interstimulus intervals of 1.5-1250 ms produced a range of after-effects that were compatible with changes in synaptic plasticity. Thus, QPS at short intervals facilitated MEPs for more than 75 min, whereas QPS at long intervals suppressed MEPs for more than 75 min. Paired-pulse TMS experiments exploring intracortical inhibition and facilitation after QPS revealed effects on excitatory but not inhibitory circuits of the primary motor cortex. Finally, the effect of priming protocols on QPS-induced plasticity was consistent with a BCM-like model of priming that shifts the crossover point at which synaptic plasticity reverses from depression to potentiation. The broad range of after-effects produced by the new rTMS protocol opens up new possibilities for detailed examination of theories of metaplasticity in humans.

Authors+Show Affiliations

Department of Neurology, Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. mhamada-tky@umin.ac.jpNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

18599542

Citation

Hamada, Masashi, et al. "Bidirectional Long-term Motor Cortical Plasticity and Metaplasticity Induced By Quadripulse Transcranial Magnetic Stimulation." The Journal of Physiology, vol. 586, no. 16, 2008, pp. 3927-47.
Hamada M, Terao Y, Hanajima R, et al. Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J Physiol (Lond). 2008;586(16):3927-47.
Hamada, M., Terao, Y., Hanajima, R., Shirota, Y., Nakatani-Enomoto, S., Furubayashi, T., Matsumoto, H., & Ugawa, Y. (2008). Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. The Journal of Physiology, 586(16), 3927-47. https://doi.org/10.1113/jphysiol.2008.152793
Hamada M, et al. Bidirectional Long-term Motor Cortical Plasticity and Metaplasticity Induced By Quadripulse Transcranial Magnetic Stimulation. J Physiol (Lond). 2008 Aug 15;586(16):3927-47. PubMed PMID: 18599542.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. AU - Hamada,Masashi, AU - Terao,Yasuo, AU - Hanajima,Ritsuko, AU - Shirota,Yuichiro, AU - Nakatani-Enomoto,Setsu, AU - Furubayashi,Toshiaki, AU - Matsumoto,Hideyuki, AU - Ugawa,Yoshikazu, Y1 - 2008/07/03/ PY - 2008/7/5/pubmed PY - 2008/11/18/medline PY - 2008/7/5/entrez SP - 3927 EP - 47 JF - The Journal of physiology JO - J. Physiol. (Lond.) VL - 586 IS - 16 N2 - Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising tool to induce plastic changes that are thought in some cases to reflect N-methyl-d-aspartate-sensitive changes in synaptic efficacy. As in animal experiments, there is some evidence that the sign of rTMS-induced plasticity depends on the prior history of cortical activity, conforming to the Bienenstock-Cooper-Munro (BCM) theory. However, experiments exploring these plastic changes have only examined priming-induced effects on a limited number of rTMS protocols, often using designs in which the priming alone had a larger effect than the principle conditioning protocol. The aim of this study was to introduce a new rTMS protocol that gives a broad range of after-effects from suppression to facilitation and then test how each of these is affected by a priming protocol that on its own has no effect on motor cortical excitability, as indexed by motor-evoked potential (MEP). Repeated trains of four monophasic TMS pulses (quadripulse stimulation: QPS) separated by interstimulus intervals of 1.5-1250 ms produced a range of after-effects that were compatible with changes in synaptic plasticity. Thus, QPS at short intervals facilitated MEPs for more than 75 min, whereas QPS at long intervals suppressed MEPs for more than 75 min. Paired-pulse TMS experiments exploring intracortical inhibition and facilitation after QPS revealed effects on excitatory but not inhibitory circuits of the primary motor cortex. Finally, the effect of priming protocols on QPS-induced plasticity was consistent with a BCM-like model of priming that shifts the crossover point at which synaptic plasticity reverses from depression to potentiation. The broad range of after-effects produced by the new rTMS protocol opens up new possibilities for detailed examination of theories of metaplasticity in humans. SN - 1469-7793 UR - https://www.unboundmedicine.com/medline/citation/18599542/Bidirectional_long_term_motor_cortical_plasticity_and_metaplasticity_induced_by_quadripulse_transcranial_magnetic_stimulation_ L2 - https://doi.org/10.1113/jphysiol.2008.152793 DB - PRIME DP - Unbound Medicine ER -