Tags

Type your tag names separated by a space and hit enter

Smoothed dissipative particle dynamics model for polymer molecules in suspension.
Phys Rev E Stat Nonlin Soft Matter Phys 2008; 77(6 Pt 2):066703PR

Abstract

We present a model for a polymer molecule in solution based on smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)]. This method is a thermodynamically consistent version of smoothed particle hydrodynamics able to discretize the Navier-Stokes equations and, at the same time, to incorporate thermal fluctuations according to the fluctuation-dissipation theorem. Within the framework of the method developed for mesoscopic multiphase flows by Hu and Adams [J. Comput. Phys. 213, 844 (2006)], we introduce additional finitely extendable nonlinear elastic interactions between particles that represent the beads of a polymer chain. In order to assess the accuracy of the technique, we analyze the static and dynamic conformational properties of the modeled polymer molecule in solution. Extensive tests of the method for the two-dimensional (2D) case are performed, showing good agreement with the analytical theory. Finally, the effect of confinement on the conformational properties of the polymer molecule is investigated by considering a 2D microchannel with gap H varying between 1 and 10 microm , of the same order as the polymer gyration radius. Several SDPD simulations are performed for different chain lengths corresponding to N=20-100 beads, giving a universal behavior of the gyration radius R_{G} and polymer stretch X as functions of the channel gap when normalized properly.

Authors+Show Affiliations

Lehrstuhl für Aerodynamik, Technische Universität München, 85747 Garching, Germany.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

18643393

Citation

Litvinov, Sergey, et al. "Smoothed Dissipative Particle Dynamics Model for Polymer Molecules in Suspension." Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, vol. 77, no. 6 Pt 2, 2008, p. 066703.
Litvinov S, Ellero M, Hu X, et al. Smoothed dissipative particle dynamics model for polymer molecules in suspension. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;77(6 Pt 2):066703.
Litvinov, S., Ellero, M., Hu, X., & Adams, N. A. (2008). Smoothed dissipative particle dynamics model for polymer molecules in suspension. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 77(6 Pt 2), p. 066703.
Litvinov S, et al. Smoothed Dissipative Particle Dynamics Model for Polymer Molecules in Suspension. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;77(6 Pt 2):066703. PubMed PMID: 18643393.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Smoothed dissipative particle dynamics model for polymer molecules in suspension. AU - Litvinov,Sergey, AU - Ellero,Marco, AU - Hu,Xiangyu, AU - Adams,Nikolaus A, Y1 - 2008/06/05/ PY - 2007/10/04/received PY - 2008/7/23/pubmed PY - 2008/7/23/medline PY - 2008/7/23/entrez SP - 066703 EP - 066703 JF - Physical review. E, Statistical, nonlinear, and soft matter physics JO - Phys Rev E Stat Nonlin Soft Matter Phys VL - 77 IS - 6 Pt 2 N2 - We present a model for a polymer molecule in solution based on smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)]. This method is a thermodynamically consistent version of smoothed particle hydrodynamics able to discretize the Navier-Stokes equations and, at the same time, to incorporate thermal fluctuations according to the fluctuation-dissipation theorem. Within the framework of the method developed for mesoscopic multiphase flows by Hu and Adams [J. Comput. Phys. 213, 844 (2006)], we introduce additional finitely extendable nonlinear elastic interactions between particles that represent the beads of a polymer chain. In order to assess the accuracy of the technique, we analyze the static and dynamic conformational properties of the modeled polymer molecule in solution. Extensive tests of the method for the two-dimensional (2D) case are performed, showing good agreement with the analytical theory. Finally, the effect of confinement on the conformational properties of the polymer molecule is investigated by considering a 2D microchannel with gap H varying between 1 and 10 microm , of the same order as the polymer gyration radius. Several SDPD simulations are performed for different chain lengths corresponding to N=20-100 beads, giving a universal behavior of the gyration radius R_{G} and polymer stretch X as functions of the channel gap when normalized properly. SN - 1539-3755 UR - https://www.unboundmedicine.com/medline/citation/18643393/Smoothed_dissipative_particle_dynamics_model_for_polymer_molecules_in_suspension_ DB - PRIME DP - Unbound Medicine ER -