Tags

Type your tag names separated by a space and hit enter

Metabolic and behavioral responses to high-fat feeding in mice selectively bred for high wheel-running activity.
Int J Obes (Lond). 2008 Oct; 32(10):1566-75.IJ

Abstract

OBJECTIVE

Increased dietary fat intake is a precipitating factor for the development of obesity and associated metabolic disturbances. Physically active individuals generally have a reduced risk of developing these unhealthy states, but the underlying mechanisms are poorly understood. In the present study, we investigated the effects of feeding a high-fat diet (HFD) on obesity development and fuel homeostasis in male and female mice with a trait for increased physical activity and in their controls.

METHODS

Male and female mice selectively bred for a high level of wheel running behavior over 30 generations and nonselected controls (background strain Hsd:ICR) were maintained on a standard lab chow high-carbohydrate diet (HCD) or on an HFD (60% fat). Food intake, body weight, indirect calorimetry parameters, spontaneous locomotor activity and several hormones relevant to metabolism and energy balance were measured.

RESULTS

On HFD, mice reduced food intake and increased body fat mass and plasma leptin levels, with the notable exception of the selected females, which increased their ingested calories without any effects on body mass or plasma leptin levels. In addition, they had an elevated daily energy expenditure (DEE), increased spontaneous cage activity (approximately 700% relative to controls) and higher resting metabolic rate (RMR) on the HFD compared with feeding the HCD. The selected males also had a higher DEE compared with controls, but no interaction with diet was observed. On HCD, adiponectin levels were higher in selected male, but not female, mice relative to controls. A marked increase in the level of plasma adiponectin was observed on the HFD in selected females, an effect of diet that was not observed in selected males.

CONCLUSION

Genetically based high locomotor activity renders female, but not male, mice resistant to HFD-induced obesity by alterations in behavioral, endocrine and metabolic traits that facilitate fat utilization rather than limiting HFD intake.

Authors+Show Affiliations

Center for Behavior and Neurosciences, Animal Behavior Unit, University of Groningen, Groningen, the Netherlands.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

18725891

Citation

Vaanholt, L M., et al. "Metabolic and Behavioral Responses to High-fat Feeding in Mice Selectively Bred for High Wheel-running Activity." International Journal of Obesity (2005), vol. 32, no. 10, 2008, pp. 1566-75.
Vaanholt LM, Jonas I, Doornbos M, et al. Metabolic and behavioral responses to high-fat feeding in mice selectively bred for high wheel-running activity. Int J Obes (Lond). 2008;32(10):1566-75.
Vaanholt, L. M., Jonas, I., Doornbos, M., Schubert, K. A., Nyakas, C., Garland, T., Visser, G. H., & van Dijk, G. (2008). Metabolic and behavioral responses to high-fat feeding in mice selectively bred for high wheel-running activity. International Journal of Obesity (2005), 32(10), 1566-75. https://doi.org/10.1038/ijo.2008.136
Vaanholt LM, et al. Metabolic and Behavioral Responses to High-fat Feeding in Mice Selectively Bred for High Wheel-running Activity. Int J Obes (Lond). 2008;32(10):1566-75. PubMed PMID: 18725891.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Metabolic and behavioral responses to high-fat feeding in mice selectively bred for high wheel-running activity. AU - Vaanholt,L M, AU - Jonas,I, AU - Doornbos,M, AU - Schubert,K A, AU - Nyakas,C, AU - Garland,T,Jr AU - Visser,G H, AU - van Dijk,G, Y1 - 2008/08/26/ PY - 2008/8/30/pubmed PY - 2009/7/2/medline PY - 2008/8/30/entrez SP - 1566 EP - 75 JF - International journal of obesity (2005) JO - Int J Obes (Lond) VL - 32 IS - 10 N2 - OBJECTIVE: Increased dietary fat intake is a precipitating factor for the development of obesity and associated metabolic disturbances. Physically active individuals generally have a reduced risk of developing these unhealthy states, but the underlying mechanisms are poorly understood. In the present study, we investigated the effects of feeding a high-fat diet (HFD) on obesity development and fuel homeostasis in male and female mice with a trait for increased physical activity and in their controls. METHODS: Male and female mice selectively bred for a high level of wheel running behavior over 30 generations and nonselected controls (background strain Hsd:ICR) were maintained on a standard lab chow high-carbohydrate diet (HCD) or on an HFD (60% fat). Food intake, body weight, indirect calorimetry parameters, spontaneous locomotor activity and several hormones relevant to metabolism and energy balance were measured. RESULTS: On HFD, mice reduced food intake and increased body fat mass and plasma leptin levels, with the notable exception of the selected females, which increased their ingested calories without any effects on body mass or plasma leptin levels. In addition, they had an elevated daily energy expenditure (DEE), increased spontaneous cage activity (approximately 700% relative to controls) and higher resting metabolic rate (RMR) on the HFD compared with feeding the HCD. The selected males also had a higher DEE compared with controls, but no interaction with diet was observed. On HCD, adiponectin levels were higher in selected male, but not female, mice relative to controls. A marked increase in the level of plasma adiponectin was observed on the HFD in selected females, an effect of diet that was not observed in selected males. CONCLUSION: Genetically based high locomotor activity renders female, but not male, mice resistant to HFD-induced obesity by alterations in behavioral, endocrine and metabolic traits that facilitate fat utilization rather than limiting HFD intake. SN - 1476-5497 UR - https://www.unboundmedicine.com/medline/citation/18725891/Metabolic_and_behavioral_responses_to_high_fat_feeding_in_mice_selectively_bred_for_high_wheel_running_activity_ L2 - http://dx.doi.org/10.1038/ijo.2008.136 DB - PRIME DP - Unbound Medicine ER -