Tags

Type your tag names separated by a space and hit enter

The effect of hydrofluoric acid surface treatment and bond strength of a zirconia veneering ceramic.
J Prosthet Dent. 2008 Sep; 100(3):194-202.JP

Abstract

STATEMENT OF PROBLEM

Clinicians are frequently faced with a challenge in selecting materials for adjacent restorations, particularly when one tooth requires a zirconia-based restoration and the next requires a veneer. While it may be desirable to use the same veneering ceramic on adjacent teeth, little information is available about the use of veneering ceramics over a zirconia-based material.

PURPOSE

The purpose of this study was threefold: (1) to study the influence of hydrofluoric acid-etched treatment on the surface topography of the zirconia veneering ceramic, (2) to test the bond strength of zirconia veneering ceramic to enamel, and (3) to evaluate the flexural strength and the elemental composition of ceramic veneers.

MATERIAL AND METHODS

Three zirconia veneering ceramics (Cerabien CZR (CZ), Lava Ceram (L), and Zirox (Z)) and 4 conventional veneering ceramics (Creation (C), IPS d.Sign (D), Noritake EX-3 (E), and Reflex (R)) were evaluated. Twenty ceramic bars of each material were fabricated and surface treated with hydrofluoric acid according to the manufacturer's recommendations. Ten specimens from each group of materials were examined with a profilometer, and a sample of this group was selected for quantitative evaluation using a scanning electron microscope (SEM). Another 10 acid-etched specimens from each group of materials were treated with silane prior to cementing with resin cement (Variolink II) on enamel surfaces. These luted specimens were loaded to failure in a universal testing machine in the shear mode with a crosshead speed of 0.05 mm/min. The data were analyzed with a 1-way ANOVA, followed by Tukey's HSD test (alpha=.05). An additional 10 ceramic bars from each material group were fabricated to evaluate flexural strength and elemental composition. The flexural strength (MPa) of each specimen was determined by using a 4-point-1/4-point flexure test. A Weibull statistic tested the reliability of the strength data; pairwise differences among the 7 groups were evaluated at confidence intervals of 95%. The chemical composition of each bar was determined by energy dispersive spectroscopy (EDS).

RESULTS

There was a significant difference in the surface roughness in all testing groups. Conventional veneering ceramics (groups C and R) had a mean surface roughness higher than the groups of zirconia veneering ceramics (P<.001). Group D showed no difference in surface roughness compared with the groups of zirconia veneering ceramics. The SEM micrographs revealed differences in the acid-etched surfaces of ceramics. Zirconia veneering ceramics were smooth, with some groove formations, while conventional veneering ceramics had an amorphous, spongy-like structure with numerous microporosites. The mean bond strength (SD) of zirconia veneering ceramics to enamel revealed a significant difference. Group R (25.16 (3.40) MPa) followed by group C (22.51 (2.82) MPa) had significantly higher mean bond strength than the groups of zirconia veneering ceramics (P<.001, P=.009 respectively). Groups D (16.54 (2.73) MPa) and E (17.92 (3.39) MPa) showed no differences. Only group L (9.45 (1.62) MPa) exhibited significantly lower mean bond strength when compared with conventional veneering ceramics (P<.001). For flexural strength, only 1 group, group CZ, had a significantly lower flexural strength than all other groups (P<.001).

CONCLUSIONS

Effective ceramic interface management, such as acid etching and enamel bonding, is essential for successful ceramic laminate veneer restorations. Not all zirconia veneering ceramics display the same quality of surface roughness after hydrofluoric acid etching and the same bond strength to enamel when used as laminate veneer materials.

Authors+Show Affiliations

Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Washington, USA. yada@koiscenter.comNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

18762031

Citation

Chaiyabutr, Yada, et al. "The Effect of Hydrofluoric Acid Surface Treatment and Bond Strength of a Zirconia Veneering Ceramic." The Journal of Prosthetic Dentistry, vol. 100, no. 3, 2008, pp. 194-202.
Chaiyabutr Y, McGowan S, Phillips KM, et al. The effect of hydrofluoric acid surface treatment and bond strength of a zirconia veneering ceramic. J Prosthet Dent. 2008;100(3):194-202.
Chaiyabutr, Y., McGowan, S., Phillips, K. M., Kois, J. C., & Giordano, R. A. (2008). The effect of hydrofluoric acid surface treatment and bond strength of a zirconia veneering ceramic. The Journal of Prosthetic Dentistry, 100(3), 194-202. https://doi.org/10.1016/S0022-3913(08)60178-X
Chaiyabutr Y, et al. The Effect of Hydrofluoric Acid Surface Treatment and Bond Strength of a Zirconia Veneering Ceramic. J Prosthet Dent. 2008;100(3):194-202. PubMed PMID: 18762031.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - The effect of hydrofluoric acid surface treatment and bond strength of a zirconia veneering ceramic. AU - Chaiyabutr,Yada, AU - McGowan,Steve, AU - Phillips,Keith M, AU - Kois,John C, AU - Giordano,Russell A, PY - 2008/9/3/pubmed PY - 2008/12/17/medline PY - 2008/9/3/entrez SP - 194 EP - 202 JF - The Journal of prosthetic dentistry JO - J Prosthet Dent VL - 100 IS - 3 N2 - STATEMENT OF PROBLEM: Clinicians are frequently faced with a challenge in selecting materials for adjacent restorations, particularly when one tooth requires a zirconia-based restoration and the next requires a veneer. While it may be desirable to use the same veneering ceramic on adjacent teeth, little information is available about the use of veneering ceramics over a zirconia-based material. PURPOSE: The purpose of this study was threefold: (1) to study the influence of hydrofluoric acid-etched treatment on the surface topography of the zirconia veneering ceramic, (2) to test the bond strength of zirconia veneering ceramic to enamel, and (3) to evaluate the flexural strength and the elemental composition of ceramic veneers. MATERIAL AND METHODS: Three zirconia veneering ceramics (Cerabien CZR (CZ), Lava Ceram (L), and Zirox (Z)) and 4 conventional veneering ceramics (Creation (C), IPS d.Sign (D), Noritake EX-3 (E), and Reflex (R)) were evaluated. Twenty ceramic bars of each material were fabricated and surface treated with hydrofluoric acid according to the manufacturer's recommendations. Ten specimens from each group of materials were examined with a profilometer, and a sample of this group was selected for quantitative evaluation using a scanning electron microscope (SEM). Another 10 acid-etched specimens from each group of materials were treated with silane prior to cementing with resin cement (Variolink II) on enamel surfaces. These luted specimens were loaded to failure in a universal testing machine in the shear mode with a crosshead speed of 0.05 mm/min. The data were analyzed with a 1-way ANOVA, followed by Tukey's HSD test (alpha=.05). An additional 10 ceramic bars from each material group were fabricated to evaluate flexural strength and elemental composition. The flexural strength (MPa) of each specimen was determined by using a 4-point-1/4-point flexure test. A Weibull statistic tested the reliability of the strength data; pairwise differences among the 7 groups were evaluated at confidence intervals of 95%. The chemical composition of each bar was determined by energy dispersive spectroscopy (EDS). RESULTS: There was a significant difference in the surface roughness in all testing groups. Conventional veneering ceramics (groups C and R) had a mean surface roughness higher than the groups of zirconia veneering ceramics (P<.001). Group D showed no difference in surface roughness compared with the groups of zirconia veneering ceramics. The SEM micrographs revealed differences in the acid-etched surfaces of ceramics. Zirconia veneering ceramics were smooth, with some groove formations, while conventional veneering ceramics had an amorphous, spongy-like structure with numerous microporosites. The mean bond strength (SD) of zirconia veneering ceramics to enamel revealed a significant difference. Group R (25.16 (3.40) MPa) followed by group C (22.51 (2.82) MPa) had significantly higher mean bond strength than the groups of zirconia veneering ceramics (P<.001, P=.009 respectively). Groups D (16.54 (2.73) MPa) and E (17.92 (3.39) MPa) showed no differences. Only group L (9.45 (1.62) MPa) exhibited significantly lower mean bond strength when compared with conventional veneering ceramics (P<.001). For flexural strength, only 1 group, group CZ, had a significantly lower flexural strength than all other groups (P<.001). CONCLUSIONS: Effective ceramic interface management, such as acid etching and enamel bonding, is essential for successful ceramic laminate veneer restorations. Not all zirconia veneering ceramics display the same quality of surface roughness after hydrofluoric acid etching and the same bond strength to enamel when used as laminate veneer materials. SN - 1097-6841 UR - https://www.unboundmedicine.com/medline/citation/18762031/The_effect_of_hydrofluoric_acid_surface_treatment_and_bond_strength_of_a_zirconia_veneering_ceramic_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0022-3913(08)60178-X DB - PRIME DP - Unbound Medicine ER -