Tags

Type your tag names separated by a space and hit enter

Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites.
Neuro Endocrinol Lett. 2008 Aug; 29(4):391-8.NE

Abstract

N-acetyl-5-methoxytryptamine (melatonin) is an endogenous indoleamine produced by all vertebrate organisms. Its production in the pineal gland has been extensively investigated but other organs also synthesize this important amine. Melatonin's functions in organisms are diverse. The actions considered in the current review relate to its ability to function in the reduction of oxidative stress, i.e., molecular damage produced by reactive oxygen and reactive nitrogen species. Numerous publications have now shown that not only is melatonin itself an efficient scavenger of free radicals and related reactants, but so are its by-products cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and others. These derivatives are produced sequentially when each functions in the capacity of a free radical scavenger. These successive reactions are referred to as the antioxidant cascade of melatonin. That melatonin has this function within cells has been observed in studies employing time lapse conventional, confocal and multiphoton fluorescent microscopy coupled with the use of appropriate mitochondrial-targeted fluorescent probes. The benefits of melatonin and its metabolites have been described in the brain where they are found to be protective in models of Parkinson's disease, Alzheimer's disease and spinal cord injury. The reader is reminded, however, that data not covered in this review has documented beneficial actions of these amines in every organ where they have been tested. The outlook for the use of melatonin in clinical trials looks encouraging given its low toxicity and high efficacy.

Authors+Show Affiliations

Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas 78229, USA. reiter@uthscsa.eduNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Review

Language

eng

PubMed ID

18766165

Citation

Reiter, Russel J., et al. "Biogenic Amines in the Reduction of Oxidative Stress: Melatonin and Its Metabolites." Neuro Endocrinology Letters, vol. 29, no. 4, 2008, pp. 391-8.
Reiter RJ, Tan DX, Jou MJ, et al. Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites. Neuro Endocrinol Lett. 2008;29(4):391-8.
Reiter, R. J., Tan, D. X., Jou, M. J., Korkmaz, A., Manchester, L. C., & Paredes, S. D. (2008). Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites. Neuro Endocrinology Letters, 29(4), 391-8.
Reiter RJ, et al. Biogenic Amines in the Reduction of Oxidative Stress: Melatonin and Its Metabolites. Neuro Endocrinol Lett. 2008;29(4):391-8. PubMed PMID: 18766165.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites. AU - Reiter,Russel J, AU - Tan,Duan-Xian, AU - Jou,Mei-Jie, AU - Korkmaz,Ahmet, AU - Manchester,Lucien C, AU - Paredes,Sergio D, PY - 2008/04/20/received PY - 2008/05/11/accepted PY - 2008/9/4/pubmed PY - 2008/11/13/medline PY - 2008/9/4/entrez SP - 391 EP - 8 JF - Neuro endocrinology letters JO - Neuro Endocrinol Lett VL - 29 IS - 4 N2 - N-acetyl-5-methoxytryptamine (melatonin) is an endogenous indoleamine produced by all vertebrate organisms. Its production in the pineal gland has been extensively investigated but other organs also synthesize this important amine. Melatonin's functions in organisms are diverse. The actions considered in the current review relate to its ability to function in the reduction of oxidative stress, i.e., molecular damage produced by reactive oxygen and reactive nitrogen species. Numerous publications have now shown that not only is melatonin itself an efficient scavenger of free radicals and related reactants, but so are its by-products cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and others. These derivatives are produced sequentially when each functions in the capacity of a free radical scavenger. These successive reactions are referred to as the antioxidant cascade of melatonin. That melatonin has this function within cells has been observed in studies employing time lapse conventional, confocal and multiphoton fluorescent microscopy coupled with the use of appropriate mitochondrial-targeted fluorescent probes. The benefits of melatonin and its metabolites have been described in the brain where they are found to be protective in models of Parkinson's disease, Alzheimer's disease and spinal cord injury. The reader is reminded, however, that data not covered in this review has documented beneficial actions of these amines in every organ where they have been tested. The outlook for the use of melatonin in clinical trials looks encouraging given its low toxicity and high efficacy. SN - 0172-780X UR - https://www.unboundmedicine.com/medline/citation/18766165/Biogenic_amines_in_the_reduction_of_oxidative_stress:_melatonin_and_its_metabolites_ L2 - https://medlineplus.gov/antioxidants.html DB - PRIME DP - Unbound Medicine ER -