Interaction between glucocorticoids and cyclic AMP in the regulation of phosphoenolpyruvate carboxykinase (GTP) in the isolated perfused rat liver. Effects of cordycepin and cycloheximide.Biochim Biophys Acta. 1976 Nov 18; 451(1):72-81.BB
The mechanism of the interaction between glucocorticoids and cyclic AMP in the regulation of phosphoenolpyruvate carboxykinase (GTP: oxalocetate carboxylase, transphosphorylating, EC 4.1.1.32) was investigated in the isolated perfused rat liver using inhibitors of transcription or translation. Dibutyryl cyclic AMP produced a rapid increase in P-enolpyruvate carboxykinase activity. The response of the enzyme to the cyclic nucleotide ceased however, at 4 h, but was restored by dexamethasone. The dibutyryl cyclic AMP-induced increase in P-enolpyruvate carboxykinase activity was completely blocked by cycloheximide, but not not by cordycepin. However, cordycepin totalaly suppressed the "permissive" effect of dexamethasone on the response of the enzyme to dibutyryl cyclic AMP. Preperfusion of the livers with dexamethasone and cycloheximide, following by perfusion without the steroid hormone and the inhibitor, resulted in a rapid rise in P-enolpyruvate carbosykinase activity, which was not affect by cordycepin. If livers were preperfused with cordycepin for different time-periods, followed by dibutyryl cyclic AMP stimulation of P-enolpyruvate carboxykinase synthesis, the response of the enzyme to the cyclic nucleotide was progressively reduced, achieving 50% inhibition after 1.5 h of preperfusion. These results suggest that the induction of hepatic P-enolpyruvate carboxykinase to maximum values, brought about by cyclic AMP at the level of translation, depends on the supply of newly synthetized mRNA provided by the transcriptional action of glucocorticoids.