Tags

Type your tag names separated by a space and hit enter

High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042.
Appl Environ Microbiol. 2008 Dec; 74(24):7514-21.AE

Abstract

We demonstrate herein the ability of Kluyveromyces marxianus to be an efficient ethanol producer and host for expressing heterologous proteins as an alternative to Saccharomyces cerevisiae. Growth and ethanol production by strains of K. marxianus and S. cerevisiae were compared under the same conditions. K. marxianus DMKU3-1042 was found to be the most suitable strain for high-temperature growth and ethanol production at 45 degrees C. This strain, but not S. cerevisiae, utilized cellobiose, xylose, xylitol, arabinose, glycerol, and lactose. To develop a K. marxianus DMKU3-1042 derivative strain suitable for genetic engineering, a uracil auxotroph was isolated and transformed with a linear DNA of the S. cerevisiae ScURA3 gene. Surprisingly, Ura(+) transformants were easily obtained. By Southern blot hybridization, the linear ScURA3 DNA was found to have inserted randomly into the K. marxianus genome. Sequencing of one Lys(-) transformant confirmed the disruption of the KmLYS1 gene by the ScURA3 insertion. A PCR-amplified linear DNA lacking K. marxianus sequences but containing an Aspergillus alpha-amylase gene under the control of the ScTDH3 promoter together with an ScURA3 marker was subsequently used to transform K. marxianus DMKU3-1042 in order to obtain transformants expressing Aspergillus alpha-amylase. Our results demonstrate that K. marxianus DMKU3-1042 can be an alternative cost-effective bioethanol producer and a host for transformation with linear DNA by use of S. cerevisiae-based molecular genetic tools.

Authors+Show Affiliations

Department of Applied Molecular Bioscience, Yamaguchi University Graduate School of Medicine, Tokiwadai, Ube 755-8611, Japan.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Comparative Study
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

18931291

Citation

Nonklang, Sanom, et al. "High-temperature Ethanol Fermentation and Transformation With Linear DNA in the Thermotolerant Yeast Kluyveromyces Marxianus DMKU3-1042." Applied and Environmental Microbiology, vol. 74, no. 24, 2008, pp. 7514-21.
Nonklang S, Abdel-Banat BM, Cha-aim K, et al. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol. 2008;74(24):7514-21.
Nonklang, S., Abdel-Banat, B. M., Cha-aim, K., Moonjai, N., Hoshida, H., Limtong, S., Yamada, M., & Akada, R. (2008). High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Applied and Environmental Microbiology, 74(24), 7514-21. https://doi.org/10.1128/AEM.01854-08
Nonklang S, et al. High-temperature Ethanol Fermentation and Transformation With Linear DNA in the Thermotolerant Yeast Kluyveromyces Marxianus DMKU3-1042. Appl Environ Microbiol. 2008;74(24):7514-21. PubMed PMID: 18931291.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. AU - Nonklang,Sanom, AU - Abdel-Banat,Babiker M A, AU - Cha-aim,Kamonchai, AU - Moonjai,Nareerat, AU - Hoshida,Hisashi, AU - Limtong,Savitree, AU - Yamada,Mamoru, AU - Akada,Rinji, Y1 - 2008/10/17/ PY - 2008/10/22/pubmed PY - 2009/1/3/medline PY - 2008/10/22/entrez SP - 7514 EP - 21 JF - Applied and environmental microbiology JO - Appl Environ Microbiol VL - 74 IS - 24 N2 - We demonstrate herein the ability of Kluyveromyces marxianus to be an efficient ethanol producer and host for expressing heterologous proteins as an alternative to Saccharomyces cerevisiae. Growth and ethanol production by strains of K. marxianus and S. cerevisiae were compared under the same conditions. K. marxianus DMKU3-1042 was found to be the most suitable strain for high-temperature growth and ethanol production at 45 degrees C. This strain, but not S. cerevisiae, utilized cellobiose, xylose, xylitol, arabinose, glycerol, and lactose. To develop a K. marxianus DMKU3-1042 derivative strain suitable for genetic engineering, a uracil auxotroph was isolated and transformed with a linear DNA of the S. cerevisiae ScURA3 gene. Surprisingly, Ura(+) transformants were easily obtained. By Southern blot hybridization, the linear ScURA3 DNA was found to have inserted randomly into the K. marxianus genome. Sequencing of one Lys(-) transformant confirmed the disruption of the KmLYS1 gene by the ScURA3 insertion. A PCR-amplified linear DNA lacking K. marxianus sequences but containing an Aspergillus alpha-amylase gene under the control of the ScTDH3 promoter together with an ScURA3 marker was subsequently used to transform K. marxianus DMKU3-1042 in order to obtain transformants expressing Aspergillus alpha-amylase. Our results demonstrate that K. marxianus DMKU3-1042 can be an alternative cost-effective bioethanol producer and a host for transformation with linear DNA by use of S. cerevisiae-based molecular genetic tools. SN - 1098-5336 UR - https://www.unboundmedicine.com/medline/citation/18931291/High_temperature_ethanol_fermentation_and_transformation_with_linear_DNA_in_the_thermotolerant_yeast_Kluyveromyces_marxianus_DMKU3_1042_ L2 - http://aem.asm.org/cgi/pmidlookup?view=long&pmid=18931291 DB - PRIME DP - Unbound Medicine ER -