Tags

Type your tag names separated by a space and hit enter

The relationship between core stability and performance in division I football players.
J Strength Cond Res. 2008 Nov; 22(6):1750-4.JS

Abstract

The purpose of this study was to identify relationships between core stability and various strength and power variables in strength and power athletes. National Collegiate Athletic Association Division I football players (height 184.0 +/- 7.1 cm, weight 100.5 +/- 22.4 kg) completed strength and performance testing before off-season conditioning. Subjects were tested on three strength variables (one-repetition maximum [1RM] bench press, 1RM squat, and 1RM power clean), four performance variables (countermovement vertical jump [CMJ], 20- and 40-yd sprints, and a 10-yd shuttle run), and core stability (back extension, trunk flexion, and left and right bridge). Significant correlations were identified between total core strength and 20-yd sprint (r = -0.594), 40-yd sprint (r = -0.604), shuttle run (r = -0.551), CMJ (r = 0.591), power clean/body weight (BW) (r = 0.622), 1RM squat (r = -0.470), bench press/BW (r = 0.369), and combined 1RM/BW (r = 0.447); trunk flexion and 20-yd sprint (r = -0.485), 40-yd sprint (r = -0.479), shuttle run (r = -0.443), CMJ (r = 0.436), power clean/BW (r = 0.396), and 1RM squat (r = -0.416); back extension and CMJ (r = 0.536), and power clean/BW (r = 0.449); right bridge and 20-yd sprint r = -0.410) and 40-yd sprint (r = -0.435), CMJ (r = 0.403), power clean/BW (r = 0.519) and bench press/BW (r = 0.372) and combined 1RM/BW (r = 0.406); and left bridge and 20-yd sprint (r = -0.376) and 40-yd sprint (r = -0.397), shuttle run (r = -0.374), and power clean/BW (r = 0.460). The results of this study suggest that core stability is moderately related to strength and performance. Thus, increases in core strength are not going to contribute significantly to strength and power and should not be the focus of strength and conditioning.

Authors+Show Affiliations

Department of Physical Education, Indiana State University, Terre Haute, Indiana, USA. tnesser@indstate.eduNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Clinical Trial
Journal Article

Language

eng

PubMed ID

18978631

Citation

Nesser, Thomas W., et al. "The Relationship Between Core Stability and Performance in Division I Football Players." Journal of Strength and Conditioning Research, vol. 22, no. 6, 2008, pp. 1750-4.
Nesser TW, Huxel KC, Tincher JL, et al. The relationship between core stability and performance in division I football players. J Strength Cond Res. 2008;22(6):1750-4.
Nesser, T. W., Huxel, K. C., Tincher, J. L., & Okada, T. (2008). The relationship between core stability and performance in division I football players. Journal of Strength and Conditioning Research, 22(6), 1750-4. https://doi.org/10.1519/JSC.0b013e3181874564
Nesser TW, et al. The Relationship Between Core Stability and Performance in Division I Football Players. J Strength Cond Res. 2008;22(6):1750-4. PubMed PMID: 18978631.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - The relationship between core stability and performance in division I football players. AU - Nesser,Thomas W, AU - Huxel,Kellie C, AU - Tincher,Jeffrey L, AU - Okada,Tomoko, PY - 2008/11/4/pubmed PY - 2009/3/13/medline PY - 2008/11/4/entrez SP - 1750 EP - 4 JF - Journal of strength and conditioning research JO - J Strength Cond Res VL - 22 IS - 6 N2 - The purpose of this study was to identify relationships between core stability and various strength and power variables in strength and power athletes. National Collegiate Athletic Association Division I football players (height 184.0 +/- 7.1 cm, weight 100.5 +/- 22.4 kg) completed strength and performance testing before off-season conditioning. Subjects were tested on three strength variables (one-repetition maximum [1RM] bench press, 1RM squat, and 1RM power clean), four performance variables (countermovement vertical jump [CMJ], 20- and 40-yd sprints, and a 10-yd shuttle run), and core stability (back extension, trunk flexion, and left and right bridge). Significant correlations were identified between total core strength and 20-yd sprint (r = -0.594), 40-yd sprint (r = -0.604), shuttle run (r = -0.551), CMJ (r = 0.591), power clean/body weight (BW) (r = 0.622), 1RM squat (r = -0.470), bench press/BW (r = 0.369), and combined 1RM/BW (r = 0.447); trunk flexion and 20-yd sprint (r = -0.485), 40-yd sprint (r = -0.479), shuttle run (r = -0.443), CMJ (r = 0.436), power clean/BW (r = 0.396), and 1RM squat (r = -0.416); back extension and CMJ (r = 0.536), and power clean/BW (r = 0.449); right bridge and 20-yd sprint r = -0.410) and 40-yd sprint (r = -0.435), CMJ (r = 0.403), power clean/BW (r = 0.519) and bench press/BW (r = 0.372) and combined 1RM/BW (r = 0.406); and left bridge and 20-yd sprint (r = -0.376) and 40-yd sprint (r = -0.397), shuttle run (r = -0.374), and power clean/BW (r = 0.460). The results of this study suggest that core stability is moderately related to strength and performance. Thus, increases in core strength are not going to contribute significantly to strength and power and should not be the focus of strength and conditioning. SN - 1533-4287 UR - https://www.unboundmedicine.com/medline/citation/18978631/The_relationship_between_core_stability_and_performance_in_division_I_football_players_ DB - PRIME DP - Unbound Medicine ER -