Tags

Type your tag names separated by a space and hit enter

New cationic and zwitterionic Cp*M(kappa2-P,S) complexes (M = Rh, Ir): divergent reactivity pathways arising from alternative modes of ancillary ligand participation in substrate activation.
J Am Chem Soc. 2008 Dec 03; 130(48):16394-406.JA

Abstract

Treatment of 0.5 equiv of [Cp*IrCl(2)](2) with 1/3-P(i)Pr(2)-2-S(t)Bu-indene afforded Cp*Ir(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (1) in 95% yield (Cp* = eta(5)-C(5)Me(5)). Addition of AgOTf or LiB(C(6)F(5))(4) x 2.5 OEt(2) to 1 gave [Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)X(-) ([2](+)X(-); X = OTf, 78%; X = B(C(6)F(5))(4), 82%), which represent the first examples of isolable coordinatively unsaturated [Cp'Ir(kappa(2)-P,S)](+)X(-) complexes. Exposure of [2](+)OTf(-) to CO afforded [2 x CO](+)OTf(-) in 91% yield, while treatment of [2](+)B(C(6)F(5))(4)(-) with PMe(3) generated [2 x PMe(3)](+)B(C(6)F(5))(4)(-) in 94% yield. Treatment of 1 with K(2)CO(3) in CH(3)CN allowed for the isolation of the unusual adduct 3 x CH(3)CN (41% isolated yield), in which the CH(3)CN bridges the Lewis acidic Cp*Ir and Lewis basic indenide fragments of the targeted coordinatively unsaturated zwitterion Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indenide) (3). In contrast to the formation of [2 x CO](+)OTf(-), exposure of 3 x CH(3)CN to CO did not afford 3 x CO; instead, a clean 1:1 mixture of (kappa(2)-3-P(i)Pr(2)-2-S-indene)Ir(CO)(2) (4) and 1,2,3,4-tetramethylfulvene was generated. Treatment of [2](+)OTf(-) with Ph(2)SiH(2) resulted in the net loss of Ph(2)Si(OTf)H to give Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (5) in 44% yield. In contrast, treatment of [2](+)B(C(6)F(5))(4)(-) with Ph(2)SiH(2) or PhSiH(3) proceeded via H-Si addition across Ir-S to give the corresponding [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPhX)-indene)](+)B(C(6)F(5))(4)(-) complexes 6a (X = Ph, 68%) or 6b (X = H, 77%), which feature a newly established S-Si linkage. Compound 6a was observed to effect net C-O bond cleavage in diethyl ether with net loss of Ph(2)Si(OEt)H, affording [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-SEt-indene)](+)B(C(6)F(5))(4)(-) (7) in 77% yield. Furthermore, 6a proved capable of transferring Ph(2)SiH(2) to acetophenone, with concomitant regeneration of [2](+)B(C(6)F(5))(4)(-); however, [2](+)X(-) did not prove to be effective ketone hydrosilylation catalysts. Treatment of 1/3-P(i)Pr(2)-2-S(t)Bu-indene with 0.5 equiv of [Cp*RhCl(2)](2) gave Cp*Rh(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (8) in 94% yield. Combination of 8 and LiB(C(6)F(5))(4) x 2.5 Et(2)O produced the coordinatively unsaturated cation [Cp*Rh(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)B(C(6)F(5))(4)(-) ([9](+)B(C(6)F(5))(4)(-)), which was transformed into [Cp*Rh(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPh(2))-indene)](+)B(C(6)F(5))(4)(-) (10) via net H-Si addition of Ph(2)SiH(2) to Rh-S. Unlike [2](+)X(-), complex [9](+)B(C(6)F(5))(4)(-) was shown to be an effective catalyst for ketone hydrosilylation. Treatment of 3 x CH(3)CN with Ph(2)SiH(2) resulted in the loss of CH(3)CN, along with the formation of Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-(1-diphenylsilylindene)) (11) (64% isolated yield) as a mixture of diastereomers. The formation of 11 corresponds to heterolytic H-Si bond activation, involving net addition of H(-) and Ph(2)HSi(+) fragments to Ir and indenide in the unobserved zwitterion 3. Crystallographic data are provided for 1, [2 x CO](+)OTf(-), 3 x CH(3)CN, 7, and 11. Collectively, these results demonstrate the versatility of donor-functionalized indene ancillary ligands in allowing for the selection of divergent metal-ligand cooperativity pathways (simply by ancillary ligand deprotonation) in the activation of small molecule substrates.

Authors+Show Affiliations

Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

18986145

Citation

Hesp, Kevin D., et al. "New Cationic and Zwitterionic Cp*M(kappa2-P,S) Complexes (M = Rh, Ir): Divergent Reactivity Pathways Arising From Alternative Modes of Ancillary Ligand Participation in Substrate Activation." Journal of the American Chemical Society, vol. 130, no. 48, 2008, pp. 16394-406.
Hesp KD, McDonald R, Ferguson MJ, et al. New cationic and zwitterionic Cp*M(kappa2-P,S) complexes (M = Rh, Ir): divergent reactivity pathways arising from alternative modes of ancillary ligand participation in substrate activation. J Am Chem Soc. 2008;130(48):16394-406.
Hesp, K. D., McDonald, R., Ferguson, M. J., & Stradiotto, M. (2008). New cationic and zwitterionic Cp*M(kappa2-P,S) complexes (M = Rh, Ir): divergent reactivity pathways arising from alternative modes of ancillary ligand participation in substrate activation. Journal of the American Chemical Society, 130(48), 16394-406. https://doi.org/10.1021/ja8062277
Hesp KD, et al. New Cationic and Zwitterionic Cp*M(kappa2-P,S) Complexes (M = Rh, Ir): Divergent Reactivity Pathways Arising From Alternative Modes of Ancillary Ligand Participation in Substrate Activation. J Am Chem Soc. 2008 Dec 3;130(48):16394-406. PubMed PMID: 18986145.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - New cationic and zwitterionic Cp*M(kappa2-P,S) complexes (M = Rh, Ir): divergent reactivity pathways arising from alternative modes of ancillary ligand participation in substrate activation. AU - Hesp,Kevin D, AU - McDonald,Robert, AU - Ferguson,Michael J, AU - Stradiotto,Mark, PY - 2008/11/7/pubmed PY - 2008/11/7/medline PY - 2008/11/7/entrez SP - 16394 EP - 406 JF - Journal of the American Chemical Society JO - J Am Chem Soc VL - 130 IS - 48 N2 - Treatment of 0.5 equiv of [Cp*IrCl(2)](2) with 1/3-P(i)Pr(2)-2-S(t)Bu-indene afforded Cp*Ir(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (1) in 95% yield (Cp* = eta(5)-C(5)Me(5)). Addition of AgOTf or LiB(C(6)F(5))(4) x 2.5 OEt(2) to 1 gave [Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)X(-) ([2](+)X(-); X = OTf, 78%; X = B(C(6)F(5))(4), 82%), which represent the first examples of isolable coordinatively unsaturated [Cp'Ir(kappa(2)-P,S)](+)X(-) complexes. Exposure of [2](+)OTf(-) to CO afforded [2 x CO](+)OTf(-) in 91% yield, while treatment of [2](+)B(C(6)F(5))(4)(-) with PMe(3) generated [2 x PMe(3)](+)B(C(6)F(5))(4)(-) in 94% yield. Treatment of 1 with K(2)CO(3) in CH(3)CN allowed for the isolation of the unusual adduct 3 x CH(3)CN (41% isolated yield), in which the CH(3)CN bridges the Lewis acidic Cp*Ir and Lewis basic indenide fragments of the targeted coordinatively unsaturated zwitterion Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indenide) (3). In contrast to the formation of [2 x CO](+)OTf(-), exposure of 3 x CH(3)CN to CO did not afford 3 x CO; instead, a clean 1:1 mixture of (kappa(2)-3-P(i)Pr(2)-2-S-indene)Ir(CO)(2) (4) and 1,2,3,4-tetramethylfulvene was generated. Treatment of [2](+)OTf(-) with Ph(2)SiH(2) resulted in the net loss of Ph(2)Si(OTf)H to give Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (5) in 44% yield. In contrast, treatment of [2](+)B(C(6)F(5))(4)(-) with Ph(2)SiH(2) or PhSiH(3) proceeded via H-Si addition across Ir-S to give the corresponding [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPhX)-indene)](+)B(C(6)F(5))(4)(-) complexes 6a (X = Ph, 68%) or 6b (X = H, 77%), which feature a newly established S-Si linkage. Compound 6a was observed to effect net C-O bond cleavage in diethyl ether with net loss of Ph(2)Si(OEt)H, affording [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-SEt-indene)](+)B(C(6)F(5))(4)(-) (7) in 77% yield. Furthermore, 6a proved capable of transferring Ph(2)SiH(2) to acetophenone, with concomitant regeneration of [2](+)B(C(6)F(5))(4)(-); however, [2](+)X(-) did not prove to be effective ketone hydrosilylation catalysts. Treatment of 1/3-P(i)Pr(2)-2-S(t)Bu-indene with 0.5 equiv of [Cp*RhCl(2)](2) gave Cp*Rh(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (8) in 94% yield. Combination of 8 and LiB(C(6)F(5))(4) x 2.5 Et(2)O produced the coordinatively unsaturated cation [Cp*Rh(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)B(C(6)F(5))(4)(-) ([9](+)B(C(6)F(5))(4)(-)), which was transformed into [Cp*Rh(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPh(2))-indene)](+)B(C(6)F(5))(4)(-) (10) via net H-Si addition of Ph(2)SiH(2) to Rh-S. Unlike [2](+)X(-), complex [9](+)B(C(6)F(5))(4)(-) was shown to be an effective catalyst for ketone hydrosilylation. Treatment of 3 x CH(3)CN with Ph(2)SiH(2) resulted in the loss of CH(3)CN, along with the formation of Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-(1-diphenylsilylindene)) (11) (64% isolated yield) as a mixture of diastereomers. The formation of 11 corresponds to heterolytic H-Si bond activation, involving net addition of H(-) and Ph(2)HSi(+) fragments to Ir and indenide in the unobserved zwitterion 3. Crystallographic data are provided for 1, [2 x CO](+)OTf(-), 3 x CH(3)CN, 7, and 11. Collectively, these results demonstrate the versatility of donor-functionalized indene ancillary ligands in allowing for the selection of divergent metal-ligand cooperativity pathways (simply by ancillary ligand deprotonation) in the activation of small molecule substrates. SN - 1520-5126 UR - https://www.unboundmedicine.com/medline/citation/18986145/New_cationic_and_zwitterionic_Cp_M_kappa2_PS__complexes__M_=_Rh_Ir_:_divergent_reactivity_pathways_arising_from_alternative_modes_of_ancillary_ligand_participation_in_substrate_activation_ DB - PRIME DP - Unbound Medicine ER -