Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2'-bipyridyl) ruthenium derivative tags.Talanta. 2007 Jul 31; 72(5):1704-9.T
An ultrasensitive electrogenerated chemiluminescence (ECL) detection method of DNA hybridization based on single-walled carbon-nanotubes (SWNT) carrying a large number of ruthenium complex tags was developed. The probe single strand DNA (ss-DNA) and ruthenium complex were loaded at SWNT, which was taken as an ECL probe. When the capture ss-DNA with a thiol group was self-assembled onto the surface of gold electrode, and then hybridized with target ss-DNA and further hybridized with the ECL probe to form DNA sandwich conjugate, a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of perfect-matched target ss-DNA in the range from 2.4x10(-14) to 1.7x10(-12)M with a detection limit of 9.0x10(-15)M. The ECL signal difference permitted to discriminate the perfect-matched target ss-DNA and two-base-mismatched ss-DNA. This work demonstrates that SWNT can provide an amplification platform for carrying a large number of ECL probe and thus resulting in an ultrasensitive ECL detection of DNA hybridization.