Tags

Type your tag names separated by a space and hit enter

Characterization of the ligand and DNA binding properties of a putative archaeal regulator ST1710.
Biochemistry. 2009 Mar 17; 48(10):2099-108.B

Abstract

While a rich collection of bacterium-like regulating proteins has been identified in the archaeal genome, few of them have been studied at the molecular level. In this study, we characterized the ligand and DNA binding properties of a putative regulator ST1710 from the archaeon Sulfolobus tokodaii. ST1710 is homologous to the multiple-antibiotic resistance repressor (MarR) family bacterial regulators. The protein consists of a ligand binding site, partially overlapping with a winged helix-turn-helix DNA binding site. We characterized the interactions between ST1710 and three ligands, salicylate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and ethidium, which bind to bacterial MarRs. The binding affinities of the ligands for ST1710 were comparable to their affinities for the bacterial MarRs. The ligand binding was temperature sensitive and caused conformational changes in ST1710. To investigate the effect of ligand binding on the interaction between ST1710 and DNA, we fluorescently labeled a 47mer dsDNA (ST1) containing a putative ST1710 recognition site and determined the dissociation constant between ST1 and ST1710 using the fluorescence polarization method. The binding affinity almost doubled from 10 degrees C (Kd = 618 +/- 34 nM) to 30 degreesC (Kd = 334 +/- 15 nM), and again from 30 to 50 degrees C (Kd = 189 +/- 9 nM). This result suggests that under the natural living condition (80 degrees C) of S. tokodaii, the binding affinity might increase even further. The presence of CCCP and salicylate suppressed ST1710-ST1 interaction, indicating that ST1710 functioned as a repressor.

Authors+Show Affiliations

Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA.No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

19166356

Citation

Yu, Linliang, et al. "Characterization of the Ligand and DNA Binding Properties of a Putative Archaeal Regulator ST1710." Biochemistry, vol. 48, no. 10, 2009, pp. 2099-108.
Yu L, Fang J, Wei Y. Characterization of the ligand and DNA binding properties of a putative archaeal regulator ST1710. Biochemistry. 2009;48(10):2099-108.
Yu, L., Fang, J., & Wei, Y. (2009). Characterization of the ligand and DNA binding properties of a putative archaeal regulator ST1710. Biochemistry, 48(10), 2099-108. https://doi.org/10.1021/bi801662s
Yu L, Fang J, Wei Y. Characterization of the Ligand and DNA Binding Properties of a Putative Archaeal Regulator ST1710. Biochemistry. 2009 Mar 17;48(10):2099-108. PubMed PMID: 19166356.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Characterization of the ligand and DNA binding properties of a putative archaeal regulator ST1710. AU - Yu,Linliang, AU - Fang,Jun, AU - Wei,Yinan, PY - 2009/1/27/entrez PY - 2009/1/27/pubmed PY - 2009/12/18/medline SP - 2099 EP - 108 JF - Biochemistry JO - Biochemistry VL - 48 IS - 10 N2 - While a rich collection of bacterium-like regulating proteins has been identified in the archaeal genome, few of them have been studied at the molecular level. In this study, we characterized the ligand and DNA binding properties of a putative regulator ST1710 from the archaeon Sulfolobus tokodaii. ST1710 is homologous to the multiple-antibiotic resistance repressor (MarR) family bacterial regulators. The protein consists of a ligand binding site, partially overlapping with a winged helix-turn-helix DNA binding site. We characterized the interactions between ST1710 and three ligands, salicylate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and ethidium, which bind to bacterial MarRs. The binding affinities of the ligands for ST1710 were comparable to their affinities for the bacterial MarRs. The ligand binding was temperature sensitive and caused conformational changes in ST1710. To investigate the effect of ligand binding on the interaction between ST1710 and DNA, we fluorescently labeled a 47mer dsDNA (ST1) containing a putative ST1710 recognition site and determined the dissociation constant between ST1 and ST1710 using the fluorescence polarization method. The binding affinity almost doubled from 10 degrees C (Kd = 618 +/- 34 nM) to 30 degreesC (Kd = 334 +/- 15 nM), and again from 30 to 50 degrees C (Kd = 189 +/- 9 nM). This result suggests that under the natural living condition (80 degrees C) of S. tokodaii, the binding affinity might increase even further. The presence of CCCP and salicylate suppressed ST1710-ST1 interaction, indicating that ST1710 functioned as a repressor. SN - 1520-4995 UR - https://www.unboundmedicine.com/medline/citation/19166356/Characterization_of_the_ligand_and_DNA_binding_properties_of_a_putative_archaeal_regulator_ST1710_ L2 - https://doi.org/10.1021/bi801662s DB - PRIME DP - Unbound Medicine ER -