Tags

Type your tag names separated by a space and hit enter

Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange.
Tree Physiol. 2009 May; 29(5):697-705.TP

Abstract

Rhizophora mangle L. trees of Biscayne National Park (Florida, USA) have two distinct growth forms: tall trees (5-10 m) growing along the coast and dwarf trees (1 m or less) growing in the adjacent inland zone. Sharp decreases in salinity and thus increases in soil water potential from surface soil to about a depth of 1 m were found at the dwarf mangrove site but not at the tall mangrove site. Consistent with our prediction, hydraulic redistribution detected by reverse sap flow in shallow prop roots was observed during nighttime, early morning and late afternoon in dwarf trees, but not in tall trees. In addition, hydraulic redistribution was observed throughout the 24-h period during a low temperature spell. Dwarf trees had significantly lower sapwood-specific hydraulic conductivity, smaller stem vessel diameter, lower leaf area to sapwood area ratio (LA/SA), smaller leaf size and higher leaf mass per area. Leaves of dwarf trees had lower CO(2) assimilation rate and lower stomatal conductance compared to tall trees. Leaf water potentials at midday were more negative in tall trees that are consistent with their substantially higher stomatal conductance and LA/SA. The substantially lower water transport efficiency and the more conservative water use of dwarf trees may be due to a combination of factors such as high salinity in the surface soil, particularly during dry periods, and substantial reverse sap flow in shallow roots that make upper soil layers with high salinity a competing sink of water to the transpiring leaves. There may also be a benefit for the dwarf trees in having hydraulic redistribution because the reverse flow and the release of water to upper soil layers should lead to dilution of the high salinity in the rhizosphere and thus relieve its potential harm to dwarf R. mangle trees.

Authors+Show Affiliations

Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province 666303, China.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

19324702

Citation

Hao, Guang-You, et al. "Hydraulic Redistribution in Dwarf Rhizophora Mangle Trees Driven By Interstitial Soil Water Salinity Gradients: Impacts On Hydraulic Architecture and Gas Exchange." Tree Physiology, vol. 29, no. 5, 2009, pp. 697-705.
Hao GY, Jones TJ, Luton C, et al. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange. Tree Physiol. 2009;29(5):697-705.
Hao, G. Y., Jones, T. J., Luton, C., Zhang, Y. J., Manzane, E., Scholz, F. G., Bucci, S. J., Cao, K. F., & Goldstein, G. (2009). Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange. Tree Physiology, 29(5), 697-705. https://doi.org/10.1093/treephys/tpp005
Hao GY, et al. Hydraulic Redistribution in Dwarf Rhizophora Mangle Trees Driven By Interstitial Soil Water Salinity Gradients: Impacts On Hydraulic Architecture and Gas Exchange. Tree Physiol. 2009;29(5):697-705. PubMed PMID: 19324702.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange. AU - Hao,Guang-You, AU - Jones,Tim J, AU - Luton,Corene, AU - Zhang,Yong-Jiang, AU - Manzane,Eric, AU - Scholz,Fabian G, AU - Bucci,Sandra J, AU - Cao,Kun-Fang, AU - Goldstein,Guillermo, Y1 - 2009/03/11/ PY - 2009/3/28/entrez PY - 2009/3/28/pubmed PY - 2009/7/9/medline SP - 697 EP - 705 JF - Tree physiology JO - Tree Physiol VL - 29 IS - 5 N2 - Rhizophora mangle L. trees of Biscayne National Park (Florida, USA) have two distinct growth forms: tall trees (5-10 m) growing along the coast and dwarf trees (1 m or less) growing in the adjacent inland zone. Sharp decreases in salinity and thus increases in soil water potential from surface soil to about a depth of 1 m were found at the dwarf mangrove site but not at the tall mangrove site. Consistent with our prediction, hydraulic redistribution detected by reverse sap flow in shallow prop roots was observed during nighttime, early morning and late afternoon in dwarf trees, but not in tall trees. In addition, hydraulic redistribution was observed throughout the 24-h period during a low temperature spell. Dwarf trees had significantly lower sapwood-specific hydraulic conductivity, smaller stem vessel diameter, lower leaf area to sapwood area ratio (LA/SA), smaller leaf size and higher leaf mass per area. Leaves of dwarf trees had lower CO(2) assimilation rate and lower stomatal conductance compared to tall trees. Leaf water potentials at midday were more negative in tall trees that are consistent with their substantially higher stomatal conductance and LA/SA. The substantially lower water transport efficiency and the more conservative water use of dwarf trees may be due to a combination of factors such as high salinity in the surface soil, particularly during dry periods, and substantial reverse sap flow in shallow roots that make upper soil layers with high salinity a competing sink of water to the transpiring leaves. There may also be a benefit for the dwarf trees in having hydraulic redistribution because the reverse flow and the release of water to upper soil layers should lead to dilution of the high salinity in the rhizosphere and thus relieve its potential harm to dwarf R. mangle trees. SN - 0829-318X UR - https://www.unboundmedicine.com/medline/citation/19324702/Hydraulic_redistribution_in_dwarf_Rhizophora_mangle_trees_driven_by_interstitial_soil_water_salinity_gradients:_impacts_on_hydraulic_architecture_and_gas_exchange_ DB - PRIME DP - Unbound Medicine ER -