Abstract
The ingression of a cleavage furrow separates the two daughter cells at the end of cell division. In many organisms this furrow ingression is driven by the assembly and contraction of actomyosin filaments, forming a contractile ring. To achieve a successful cytokinesis, these actomyosin filaments need to be assembled in an organized manner. For this purpose, a network of cytoskeletal proteins is built at the cleavage site to act as a scaffold for actomyosin filaments and to connect them to the plasma membrane. The Drosophila melanogaster protein Anillin, and its related proteins in other organisms, has a pivotal role in the organization of this scaffold in many species, ranging from yeast to humans. Recent studies indicate that Anillin-related proteins interact not only with the structural components of the contractile ring, but also with the signalling factors that control their dynamics. In addition, Drosophila Anillin connects the actomyosin ring to the spindle microtubules through its interaction with the RacGAP component of the centralspindlin complex. Here I review the structures and functions of Anillin and Anillin-related proteins in various model systems, and aim to highlight both the common and distinctive features of these essential organizers of the molecular machinery that drives furrow ingression.
TY - JOUR
T1 - How to scaffold the contractile ring for a safe cytokinesis - lessons from Anillin-related proteins.
A1 - D'Avino,Pier Paolo,
PY - 2009/4/3/entrez
PY - 2009/4/3/pubmed
PY - 2009/6/12/medline
SP - 1071
EP - 9
JF - Journal of cell science
JO - J Cell Sci
VL - 122
IS - Pt 8
N2 - The ingression of a cleavage furrow separates the two daughter cells at the end of cell division. In many organisms this furrow ingression is driven by the assembly and contraction of actomyosin filaments, forming a contractile ring. To achieve a successful cytokinesis, these actomyosin filaments need to be assembled in an organized manner. For this purpose, a network of cytoskeletal proteins is built at the cleavage site to act as a scaffold for actomyosin filaments and to connect them to the plasma membrane. The Drosophila melanogaster protein Anillin, and its related proteins in other organisms, has a pivotal role in the organization of this scaffold in many species, ranging from yeast to humans. Recent studies indicate that Anillin-related proteins interact not only with the structural components of the contractile ring, but also with the signalling factors that control their dynamics. In addition, Drosophila Anillin connects the actomyosin ring to the spindle microtubules through its interaction with the RacGAP component of the centralspindlin complex. Here I review the structures and functions of Anillin and Anillin-related proteins in various model systems, and aim to highlight both the common and distinctive features of these essential organizers of the molecular machinery that drives furrow ingression.
SN - 0021-9533
UR - https://www.unboundmedicine.com/medline/citation/19339546/How_to_scaffold_the_contractile_ring_for_a_safe_cytokinesis___lessons_from_Anillin_related_proteins_
L2 - http://jcs.biologists.org/cgi/pmidlookup?view=long&pmid=19339546
DB - PRIME
DP - Unbound Medicine
ER -