Tags

Type your tag names separated by a space and hit enter

Ni(II)/H(2)O(2) reactivity in bis[(pyridin-2-yl)methyl]amine tridentate ligand system. aromatic hydroxylation reaction by bis(mu-oxo)dinickel(III) complex.
Inorg Chem. 2009 Jun 01; 48(11):4997-5004.IC

Abstract

The nickel(II) complexes 1(X) supported by bis[(pyridin-2-yl)methyl]benzylamine tridentate ligands carrying m-substituted phenyl groups (X = OMe, Me, H, Cl, NO(2)) at the 6-position of pyridine donor groups (L(X), N,N-bis[(6-m-substituted-phenylpyridin-2-yl)methyl]benzylamine) have been synthesized and characterized. The X-ray crystallographic analyses have revealed that [Ni(II)(L(H))(CH(3)CN)(H(2)O)](ClO(4))(2) (1(H)), [Ni(II)(L(OMe))(CH(3)CN)(MeOH)](ClO(4))(2) (1(OMe)), [Ni(II)(L(Me))(CH(3)CN)(H(2)O)](ClO(4))(2) (1(Me)), and [Ni(II)(L(Cl))(CH(3)CN)(H(2)O)](ClO(4))(2) (1(Cl)) have a five-coordinate square pyramidal geometry, whereas [Ni(II)(L(NO(2)))(CH(3)CN)(2)(H(2)O)](ClO(4))(2) (1(NO(2))) exhibits a six-coordinate octahedral geometry having an additional CH(3)CN co-ligand. (1)H NMR spectra of the nickel(II) complexes 1(X) in CD(3)CN have indicated that all the complexes have a high spin ground state. The nickel(II) complexes 1(X) react with hydrogen peroxide (H(2)O(2)) in acetone to give bis(mu-oxo)dinickel(III) complexes 2(X) exhibiting a characteristic UV-vis absorption band at approximately 420 nm. In the case of 2(H), a resonance Raman band ascribable to a Ni(2)O(2) core vibration was observed at 611 cm(-1) that shifted to 586 cm(-1) upon H(2)(18)O(2). The bis(mu-oxo)dinickel(III) intermediates 2(X) undergo an efficient aromatic ligand hydroxylation reaction, producing a mononuclear nickel(II)-phenolate complexes 4(X) via a putative intermediate (mu-phenoxo)(mu-hydroxo)dinickel(II) (3(X)). The kinetic studies on the aromatic ligand hydroxylation process including m-substituent effects (Hammett analysis) and kinetic deuterium isotope effects (KIE) have indicated that the reaction of 2(X) to 3(X) involves an electrophilic aromatic substitution mechanism, where C-O bond formation and C-H bond cleavage occur in a concerted manner. Intermediate 3(H) was detected by ESI-MS during the course of the reaction, and the final product 4(H) was characterized by elemental analysis, ESI-MS, and X-ray crystallographic analysis.

Authors+Show Affiliations

Department of Chemistry,Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

19374371

Citation

Kunishita, Atsushi, et al. "Ni(II)/H(2)O(2) Reactivity in Bis[(pyridin-2-yl)methyl]amine Tridentate Ligand System. Aromatic Hydroxylation Reaction By bis(mu-oxo)dinickel(III) Complex." Inorganic Chemistry, vol. 48, no. 11, 2009, pp. 4997-5004.
Kunishita A, Doi Y, Kubo M, et al. Ni(II)/H(2)O(2) reactivity in bis[(pyridin-2-yl)methyl]amine tridentate ligand system. aromatic hydroxylation reaction by bis(mu-oxo)dinickel(III) complex. Inorg Chem. 2009;48(11):4997-5004.
Kunishita, A., Doi, Y., Kubo, M., Ogura, T., Sugimoto, H., & Itoh, S. (2009). Ni(II)/H(2)O(2) reactivity in bis[(pyridin-2-yl)methyl]amine tridentate ligand system. aromatic hydroxylation reaction by bis(mu-oxo)dinickel(III) complex. Inorganic Chemistry, 48(11), 4997-5004. https://doi.org/10.1021/ic900059m
Kunishita A, et al. Ni(II)/H(2)O(2) Reactivity in Bis[(pyridin-2-yl)methyl]amine Tridentate Ligand System. Aromatic Hydroxylation Reaction By bis(mu-oxo)dinickel(III) Complex. Inorg Chem. 2009 Jun 1;48(11):4997-5004. PubMed PMID: 19374371.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Ni(II)/H(2)O(2) reactivity in bis[(pyridin-2-yl)methyl]amine tridentate ligand system. aromatic hydroxylation reaction by bis(mu-oxo)dinickel(III) complex. AU - Kunishita,Atsushi, AU - Doi,Yoshitaka, AU - Kubo,Minoru, AU - Ogura,Takashi, AU - Sugimoto,Hideki, AU - Itoh,Shinobu, PY - 2009/4/21/entrez PY - 2009/4/21/pubmed PY - 2009/7/25/medline SP - 4997 EP - 5004 JF - Inorganic chemistry JO - Inorg Chem VL - 48 IS - 11 N2 - The nickel(II) complexes 1(X) supported by bis[(pyridin-2-yl)methyl]benzylamine tridentate ligands carrying m-substituted phenyl groups (X = OMe, Me, H, Cl, NO(2)) at the 6-position of pyridine donor groups (L(X), N,N-bis[(6-m-substituted-phenylpyridin-2-yl)methyl]benzylamine) have been synthesized and characterized. The X-ray crystallographic analyses have revealed that [Ni(II)(L(H))(CH(3)CN)(H(2)O)](ClO(4))(2) (1(H)), [Ni(II)(L(OMe))(CH(3)CN)(MeOH)](ClO(4))(2) (1(OMe)), [Ni(II)(L(Me))(CH(3)CN)(H(2)O)](ClO(4))(2) (1(Me)), and [Ni(II)(L(Cl))(CH(3)CN)(H(2)O)](ClO(4))(2) (1(Cl)) have a five-coordinate square pyramidal geometry, whereas [Ni(II)(L(NO(2)))(CH(3)CN)(2)(H(2)O)](ClO(4))(2) (1(NO(2))) exhibits a six-coordinate octahedral geometry having an additional CH(3)CN co-ligand. (1)H NMR spectra of the nickel(II) complexes 1(X) in CD(3)CN have indicated that all the complexes have a high spin ground state. The nickel(II) complexes 1(X) react with hydrogen peroxide (H(2)O(2)) in acetone to give bis(mu-oxo)dinickel(III) complexes 2(X) exhibiting a characteristic UV-vis absorption band at approximately 420 nm. In the case of 2(H), a resonance Raman band ascribable to a Ni(2)O(2) core vibration was observed at 611 cm(-1) that shifted to 586 cm(-1) upon H(2)(18)O(2). The bis(mu-oxo)dinickel(III) intermediates 2(X) undergo an efficient aromatic ligand hydroxylation reaction, producing a mononuclear nickel(II)-phenolate complexes 4(X) via a putative intermediate (mu-phenoxo)(mu-hydroxo)dinickel(II) (3(X)). The kinetic studies on the aromatic ligand hydroxylation process including m-substituent effects (Hammett analysis) and kinetic deuterium isotope effects (KIE) have indicated that the reaction of 2(X) to 3(X) involves an electrophilic aromatic substitution mechanism, where C-O bond formation and C-H bond cleavage occur in a concerted manner. Intermediate 3(H) was detected by ESI-MS during the course of the reaction, and the final product 4(H) was characterized by elemental analysis, ESI-MS, and X-ray crystallographic analysis. SN - 1520-510X UR - https://www.unboundmedicine.com/medline/citation/19374371/Ni_II_/H_2_O_2__reactivity_in_bis[_pyridin_2_yl_methyl]amine_tridentate_ligand_system__aromatic_hydroxylation_reaction_by_bis_mu_oxo_dinickel_III__complex_ L2 - https://doi.org/10.1021/ic900059m DB - PRIME DP - Unbound Medicine ER -