Tags

Type your tag names separated by a space and hit enter

Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies.
J Hazard Mater. 2009 Sep 30; 169(1-3):263-70.JH

Abstract

The potential use of the lichen biomass (Xanthoparmelia conspersa) to remove mercury(II) ions from aqueous solution by biosorption was evaluated using the batch method. Effects of pH, contact time, biomass concentration and temperature on the removal of Hg(II) ions were studied. The Langmuir isotherm models defined the equilibrium data precisely compared to Freundlich model and the maximum biosorption capacity obtained was 82.8 mg g(-1). From the D-R isotherm model, the mean free energy was calculated as 9.5 kJ mol(-1). It shows that the biosorption of Hg(II) ions onto X. conspersa biomass was taken place by chemical ion-exchange. Experimental data were also performed to the pseudo-first-order and pseudo-second-order kinetic models. The results indicated that the biosorption of Hg(II) on the lichen biomass followed well the second-order kinetics. Thermodynamic parameters, DeltaG(o), DeltaH(o) and DeltaS(o) indicated the Hg(II) sorption to be exothermic and spontaneous with decreased randomness at the solid-solution interface. Furthermore, the lichen biomass could be regenerated using 1M HCl, with up to 85% recovery, which allowed the reuse of the biomass in ten biosorption-desorption cycles without any considerable loss of biosorptive removal capacity.

Authors+Show Affiliations

Department of Chemistry, Gaziosmanpasa University, 60250 Tokat, Turkey.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Evaluation Study
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

19380200

Citation

Tuzen, Mustafa, et al. "Biosorptive Removal of mercury(II) From Aqueous Solution Using Lichen (Xanthoparmelia Conspersa) Biomass: Kinetic and Equilibrium Studies." Journal of Hazardous Materials, vol. 169, no. 1-3, 2009, pp. 263-70.
Tuzen M, Sari A, Mendil D, et al. Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies. J Hazard Mater. 2009;169(1-3):263-70.
Tuzen, M., Sari, A., Mendil, D., & Soylak, M. (2009). Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies. Journal of Hazardous Materials, 169(1-3), 263-70. https://doi.org/10.1016/j.jhazmat.2009.03.096
Tuzen M, et al. Biosorptive Removal of mercury(II) From Aqueous Solution Using Lichen (Xanthoparmelia Conspersa) Biomass: Kinetic and Equilibrium Studies. J Hazard Mater. 2009 Sep 30;169(1-3):263-70. PubMed PMID: 19380200.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies. AU - Tuzen,Mustafa, AU - Sari,Ahmet, AU - Mendil,Durali, AU - Soylak,Mustafa, Y1 - 2009/03/27/ PY - 2009/01/30/received PY - 2009/03/17/revised PY - 2009/03/18/accepted PY - 2009/4/22/entrez PY - 2009/4/22/pubmed PY - 2009/9/29/medline SP - 263 EP - 70 JF - Journal of hazardous materials JO - J Hazard Mater VL - 169 IS - 1-3 N2 - The potential use of the lichen biomass (Xanthoparmelia conspersa) to remove mercury(II) ions from aqueous solution by biosorption was evaluated using the batch method. Effects of pH, contact time, biomass concentration and temperature on the removal of Hg(II) ions were studied. The Langmuir isotherm models defined the equilibrium data precisely compared to Freundlich model and the maximum biosorption capacity obtained was 82.8 mg g(-1). From the D-R isotherm model, the mean free energy was calculated as 9.5 kJ mol(-1). It shows that the biosorption of Hg(II) ions onto X. conspersa biomass was taken place by chemical ion-exchange. Experimental data were also performed to the pseudo-first-order and pseudo-second-order kinetic models. The results indicated that the biosorption of Hg(II) on the lichen biomass followed well the second-order kinetics. Thermodynamic parameters, DeltaG(o), DeltaH(o) and DeltaS(o) indicated the Hg(II) sorption to be exothermic and spontaneous with decreased randomness at the solid-solution interface. Furthermore, the lichen biomass could be regenerated using 1M HCl, with up to 85% recovery, which allowed the reuse of the biomass in ten biosorption-desorption cycles without any considerable loss of biosorptive removal capacity. SN - 1873-3336 UR - https://www.unboundmedicine.com/medline/citation/19380200/Biosorptive_removal_of_mercury_II__from_aqueous_solution_using_lichen__Xanthoparmelia_conspersa__biomass:_kinetic_and_equilibrium_studies_ DB - PRIME DP - Unbound Medicine ER -