Tags

Type your tag names separated by a space and hit enter

Molecular diversity of visual pigments in Stomatopoda (Crustacea).
Vis Neurosci. 2009 May-Jun; 26(3):255-65.VN

Abstract

Stomatopod crustaceans possess apposition compound eyes that contain more photoreceptor types than any other animal described. While the anatomy and physiology of this complexity have been studied for more than two decades, few studies have investigated the molecular aspects underlying the stomatopod visual complexity. Based on previous studies of the structure and function of the different types of photoreceptors, stomatopod retinas are hypothesized to contain up to 16 different visual pigments, with 6 of these having sensitivity to middle or long wavelengths of light. We investigated stomatopod middle- and long-wavelength-sensitive opsin genes from five species with the hypothesis that each species investigated would express up to six different opsin genes. In order to understand the evolution of this class of stomatopod opsins, we examined the complement of expressed transcripts in the retinas of species representing a broad taxonomic range (four families and three superfamilies). A total of 54 unique retinal opsins were isolated, resulting in 6-15 different expressed transcripts in each species. Phylogenetically, these transcripts form six distinct clades, grouping with other crustacean opsins and sister to insect long-wavelength visual pigments. Within these stomatopod opsin groups, intra- and interspecific clusters of highly similar transcripts suggest that there has been rampant recent gene duplication. Some of the observed molecular diversity is also due to ancient gene duplication events within the stem crustacean lineage. Using evolutionary trace analysis, 10 amino acid sites were identified as functionally divergent among the six stomatopod opsin clades. These sites form tight clusters in two regions of the opsin protein known to be functionally important: six in the chromophore-binding pocket and four at the cytoplasmic surface in loops II and III. These two clusters of sites indicate that stomatopod opsins have diverged with respect to both spectral tuning and signal transduction.

Authors+Show Affiliations

Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA. porter@umbc.eduNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

19534844

Citation

Porter, Megan L., et al. "Molecular Diversity of Visual Pigments in Stomatopoda (Crustacea)." Visual Neuroscience, vol. 26, no. 3, 2009, pp. 255-65.
Porter ML, Bok MJ, Robinson PR, et al. Molecular diversity of visual pigments in Stomatopoda (Crustacea). Vis Neurosci. 2009;26(3):255-65.
Porter, M. L., Bok, M. J., Robinson, P. R., & Cronin, T. W. (2009). Molecular diversity of visual pigments in Stomatopoda (Crustacea). Visual Neuroscience, 26(3), 255-65. https://doi.org/10.1017/S0952523809090129
Porter ML, et al. Molecular Diversity of Visual Pigments in Stomatopoda (Crustacea). Vis Neurosci. 2009 May-Jun;26(3):255-65. PubMed PMID: 19534844.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Molecular diversity of visual pigments in Stomatopoda (Crustacea). AU - Porter,Megan L, AU - Bok,Michael J, AU - Robinson,Phyllis R, AU - Cronin,Thomas W, Y1 - 2009/06/18/ PY - 2009/6/19/entrez PY - 2009/6/19/pubmed PY - 2009/10/16/medline SP - 255 EP - 65 JF - Visual neuroscience JO - Vis Neurosci VL - 26 IS - 3 N2 - Stomatopod crustaceans possess apposition compound eyes that contain more photoreceptor types than any other animal described. While the anatomy and physiology of this complexity have been studied for more than two decades, few studies have investigated the molecular aspects underlying the stomatopod visual complexity. Based on previous studies of the structure and function of the different types of photoreceptors, stomatopod retinas are hypothesized to contain up to 16 different visual pigments, with 6 of these having sensitivity to middle or long wavelengths of light. We investigated stomatopod middle- and long-wavelength-sensitive opsin genes from five species with the hypothesis that each species investigated would express up to six different opsin genes. In order to understand the evolution of this class of stomatopod opsins, we examined the complement of expressed transcripts in the retinas of species representing a broad taxonomic range (four families and three superfamilies). A total of 54 unique retinal opsins were isolated, resulting in 6-15 different expressed transcripts in each species. Phylogenetically, these transcripts form six distinct clades, grouping with other crustacean opsins and sister to insect long-wavelength visual pigments. Within these stomatopod opsin groups, intra- and interspecific clusters of highly similar transcripts suggest that there has been rampant recent gene duplication. Some of the observed molecular diversity is also due to ancient gene duplication events within the stem crustacean lineage. Using evolutionary trace analysis, 10 amino acid sites were identified as functionally divergent among the six stomatopod opsin clades. These sites form tight clusters in two regions of the opsin protein known to be functionally important: six in the chromophore-binding pocket and four at the cytoplasmic surface in loops II and III. These two clusters of sites indicate that stomatopod opsins have diverged with respect to both spectral tuning and signal transduction. SN - 1469-8714 UR - https://www.unboundmedicine.com/medline/citation/19534844/Molecular_diversity_of_visual_pigments_in_Stomatopoda__Crustacea__ L2 - https://www.cambridge.org/core/product/identifier/S0952523809090129/type/journal_article DB - PRIME DP - Unbound Medicine ER -