Tags

Type your tag names separated by a space and hit enter

Human visual system automatically encodes sequential regularities of discrete events.
J Cogn Neurosci. 2010 Jun; 22(6):1124-39.JC

Abstract

For our adaptive behavior in a dynamically changing environment, an essential task of the brain is to automatically encode sequential regularities inherent in the environment into a memory representation. Recent studies in neuroscience have suggested that sequential regularities embedded in discrete sensory events are automatically encoded into a memory representation at the level of the sensory system. This notion is largely supported by evidence from investigations using auditory mismatch negativity (auditory MMN), an event-related brain potential (ERP) correlate of an automatic memory-mismatch process in the auditory sensory system. However, it is still largely unclear whether or not this notion can be generalized to other sensory modalities. The purpose of the present study was to investigate the contribution of the visual sensory system to the automatic encoding of sequential regularities using visual mismatch negativity (visual MMN), an ERP correlate of an automatic memory-mismatch process in the visual sensory system. To this end, we conducted a sequential analysis of visual MMN in an oddball sequence consisting of infrequent deviant and frequent standard stimuli, and tested whether the underlying memory representation of visual MMN generation contains only a sensory memory trace of standard stimuli (trace-mismatch hypothesis) or whether it also contains sequential regularities extracted from the repetitive standard sequence (regularity-violation hypothesis). The results showed that visual MMN was elicited by first deviant (deviant stimuli following at least one standard stimulus), second deviant (deviant stimuli immediately following first deviant), and first standard (standard stimuli immediately following first deviant), but not by second standard (standard stimuli immediately following first standard). These results are consistent with the regularity-violation hypothesis, suggesting that the visual sensory system automatically encodes sequential regularities. In combination with a wide range of auditory MMN studies, the present study highlights the critical role of sensory systems in automatically encoding sequential regularities when modeling the world.

Authors+Show Affiliations

Department of Psychology, Nagoya University, Nagoya, Japan. m-kimura@nagoya-u.jpNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

19583466

Citation

Kimura, Motohiro, et al. "Human Visual System Automatically Encodes Sequential Regularities of Discrete Events." Journal of Cognitive Neuroscience, vol. 22, no. 6, 2010, pp. 1124-39.
Kimura M, Schröger E, Czigler I, et al. Human visual system automatically encodes sequential regularities of discrete events. J Cogn Neurosci. 2010;22(6):1124-39.
Kimura, M., Schröger, E., Czigler, I., & Ohira, H. (2010). Human visual system automatically encodes sequential regularities of discrete events. Journal of Cognitive Neuroscience, 22(6), 1124-39. https://doi.org/10.1162/jocn.2009.21299
Kimura M, et al. Human Visual System Automatically Encodes Sequential Regularities of Discrete Events. J Cogn Neurosci. 2010;22(6):1124-39. PubMed PMID: 19583466.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Human visual system automatically encodes sequential regularities of discrete events. AU - Kimura,Motohiro, AU - Schröger,Erich, AU - Czigler,István, AU - Ohira,Hideki, PY - 2009/7/9/entrez PY - 2009/7/9/pubmed PY - 2010/6/29/medline SP - 1124 EP - 39 JF - Journal of cognitive neuroscience JO - J Cogn Neurosci VL - 22 IS - 6 N2 - For our adaptive behavior in a dynamically changing environment, an essential task of the brain is to automatically encode sequential regularities inherent in the environment into a memory representation. Recent studies in neuroscience have suggested that sequential regularities embedded in discrete sensory events are automatically encoded into a memory representation at the level of the sensory system. This notion is largely supported by evidence from investigations using auditory mismatch negativity (auditory MMN), an event-related brain potential (ERP) correlate of an automatic memory-mismatch process in the auditory sensory system. However, it is still largely unclear whether or not this notion can be generalized to other sensory modalities. The purpose of the present study was to investigate the contribution of the visual sensory system to the automatic encoding of sequential regularities using visual mismatch negativity (visual MMN), an ERP correlate of an automatic memory-mismatch process in the visual sensory system. To this end, we conducted a sequential analysis of visual MMN in an oddball sequence consisting of infrequent deviant and frequent standard stimuli, and tested whether the underlying memory representation of visual MMN generation contains only a sensory memory trace of standard stimuli (trace-mismatch hypothesis) or whether it also contains sequential regularities extracted from the repetitive standard sequence (regularity-violation hypothesis). The results showed that visual MMN was elicited by first deviant (deviant stimuli following at least one standard stimulus), second deviant (deviant stimuli immediately following first deviant), and first standard (standard stimuli immediately following first deviant), but not by second standard (standard stimuli immediately following first standard). These results are consistent with the regularity-violation hypothesis, suggesting that the visual sensory system automatically encodes sequential regularities. In combination with a wide range of auditory MMN studies, the present study highlights the critical role of sensory systems in automatically encoding sequential regularities when modeling the world. SN - 1530-8898 UR - https://www.unboundmedicine.com/medline/citation/19583466/Human_visual_system_automatically_encodes_sequential_regularities_of_discrete_events_ L2 - https://www.mitpressjournals.org/doi/10.1162/jocn.2009.21299?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub=pubmed DB - PRIME DP - Unbound Medicine ER -