Tags

Type your tag names separated by a space and hit enter

Genomic organization and mRNA expression of manganese superoxide dismutase (Mn-SOD) from Hemibarbus mylodon (Teleostei, Cypriniformes).
Fish Shellfish Immunol. 2009 Oct; 27(4):571-6.FS

Abstract

The genomic structure of manganese superoxide dismutase (Mn-SOD) was characterized in Hemibarbus mylodon (Teleostei, Cypriniformes), an endangered freshwater fish species, and changes in Mn-SOD mRNA expression in response to various stimuli, such as challenge with lipopolysaccharide (LPS), bacteria, or heavy metals, were examined. H. mylodon Mn-SOD possesses well-conserved features of vertebrate Mn-SODs, including its homologous quinquepartite gene structure (five exons interrupted by four introns) and high sequence identity with vertebrate orthologs in coding regions, including a typical eukaryotic Mn-SOD signature. The 5'-regulatory upstream region of the H. mylodon Mn-SOD gene lacked a canonical TATA sequence; however, it displayed various transcription factor binding elements that may be involved in immune and stress responses, as well as the modulation of enzymes that mediate the metabolism of metals and other xenobiotics. Bioinformatic analysis of Mn-SOD genes from fish and mammalian genome databases revealed chromosomal synteny of the Mn-SOD locus in the vertebrate lineage. Mn-SOD transcripts were ubiquitously detected in diverse tissues with variable levels of basal expression using an RT-PCR assay. Mn-SOD expression in the liver and kidney were significantly modulated by injection of LPS (1, 5, or 10 microg g(-1) body weight), Edwardsiella tarda challenge (5 x 10(3) or 5 x 10(5) cells/fish), and heavy metal exposure (Cd, Cu, or Zn at 5 microM). Results from this study suggest that Mn-SOD plays an important role in the host defence against oxidative damage caused by infection-mediated inflammation and/or toxicant related stress in this species.

Authors+Show Affiliations

Department of Aquaculture, Pukyong National University, Busan 608-737, South Korea.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

19616630

Citation

Cho, Young Sun, et al. "Genomic Organization and mRNA Expression of Manganese Superoxide Dismutase (Mn-SOD) From Hemibarbus Mylodon (Teleostei, Cypriniformes)." Fish & Shellfish Immunology, vol. 27, no. 4, 2009, pp. 571-6.
Cho YS, Lee SY, Bang IC, et al. Genomic organization and mRNA expression of manganese superoxide dismutase (Mn-SOD) from Hemibarbus mylodon (Teleostei, Cypriniformes). Fish Shellfish Immunol. 2009;27(4):571-6.
Cho, Y. S., Lee, S. Y., Bang, I. C., Kim, D. S., & Nam, Y. K. (2009). Genomic organization and mRNA expression of manganese superoxide dismutase (Mn-SOD) from Hemibarbus mylodon (Teleostei, Cypriniformes). Fish & Shellfish Immunology, 27(4), 571-6. https://doi.org/10.1016/j.fsi.2009.07.003
Cho YS, et al. Genomic Organization and mRNA Expression of Manganese Superoxide Dismutase (Mn-SOD) From Hemibarbus Mylodon (Teleostei, Cypriniformes). Fish Shellfish Immunol. 2009;27(4):571-6. PubMed PMID: 19616630.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Genomic organization and mRNA expression of manganese superoxide dismutase (Mn-SOD) from Hemibarbus mylodon (Teleostei, Cypriniformes). AU - Cho,Young Sun, AU - Lee,Sang Yoon, AU - Bang,In Chul, AU - Kim,Dong Soo, AU - Nam,Yoon Kwon, Y1 - 2009/07/17/ PY - 2009/04/23/received PY - 2009/07/09/revised PY - 2009/07/12/accepted PY - 2009/7/21/entrez PY - 2009/7/21/pubmed PY - 2009/12/16/medline SP - 571 EP - 6 JF - Fish & shellfish immunology JO - Fish Shellfish Immunol VL - 27 IS - 4 N2 - The genomic structure of manganese superoxide dismutase (Mn-SOD) was characterized in Hemibarbus mylodon (Teleostei, Cypriniformes), an endangered freshwater fish species, and changes in Mn-SOD mRNA expression in response to various stimuli, such as challenge with lipopolysaccharide (LPS), bacteria, or heavy metals, were examined. H. mylodon Mn-SOD possesses well-conserved features of vertebrate Mn-SODs, including its homologous quinquepartite gene structure (five exons interrupted by four introns) and high sequence identity with vertebrate orthologs in coding regions, including a typical eukaryotic Mn-SOD signature. The 5'-regulatory upstream region of the H. mylodon Mn-SOD gene lacked a canonical TATA sequence; however, it displayed various transcription factor binding elements that may be involved in immune and stress responses, as well as the modulation of enzymes that mediate the metabolism of metals and other xenobiotics. Bioinformatic analysis of Mn-SOD genes from fish and mammalian genome databases revealed chromosomal synteny of the Mn-SOD locus in the vertebrate lineage. Mn-SOD transcripts were ubiquitously detected in diverse tissues with variable levels of basal expression using an RT-PCR assay. Mn-SOD expression in the liver and kidney were significantly modulated by injection of LPS (1, 5, or 10 microg g(-1) body weight), Edwardsiella tarda challenge (5 x 10(3) or 5 x 10(5) cells/fish), and heavy metal exposure (Cd, Cu, or Zn at 5 microM). Results from this study suggest that Mn-SOD plays an important role in the host defence against oxidative damage caused by infection-mediated inflammation and/or toxicant related stress in this species. SN - 1095-9947 UR - https://www.unboundmedicine.com/medline/citation/19616630/Genomic_organization_and_mRNA_expression_of_manganese_superoxide_dismutase__Mn_SOD__from_Hemibarbus_mylodon__Teleostei_Cypriniformes__ L2 - https://linkinghub.elsevier.com/retrieve/pii/S1050-4648(09)00242-3 DB - PRIME DP - Unbound Medicine ER -