Tags

Type your tag names separated by a space and hit enter

Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age.
Eur J Cell Biol. 2009 Nov; 88(11):685-700.EJ

Abstract

The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.

Authors+Show Affiliations

Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

19616867

Citation

Gannon, Joan, et al. "Drastic Increase of Myosin Light Chain MLC-2 in Senescent Skeletal Muscle Indicates Fast-to-slow Fibre Transition in Sarcopenia of Old Age." European Journal of Cell Biology, vol. 88, no. 11, 2009, pp. 685-700.
Gannon J, Doran P, Kirwan A, et al. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. Eur J Cell Biol. 2009;88(11):685-700.
Gannon, J., Doran, P., Kirwan, A., & Ohlendieck, K. (2009). Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. European Journal of Cell Biology, 88(11), 685-700. https://doi.org/10.1016/j.ejcb.2009.06.004
Gannon J, et al. Drastic Increase of Myosin Light Chain MLC-2 in Senescent Skeletal Muscle Indicates Fast-to-slow Fibre Transition in Sarcopenia of Old Age. Eur J Cell Biol. 2009;88(11):685-700. PubMed PMID: 19616867.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. AU - Gannon,Joan, AU - Doran,Philip, AU - Kirwan,Anne, AU - Ohlendieck,Kay, Y1 - 2009/07/19/ PY - 2009/03/06/received PY - 2009/06/25/revised PY - 2009/06/27/accepted PY - 2009/7/21/entrez PY - 2009/7/21/pubmed PY - 2010/1/1/medline SP - 685 EP - 700 JF - European journal of cell biology JO - Eur J Cell Biol VL - 88 IS - 11 N2 - The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age. SN - 1618-1298 UR - https://www.unboundmedicine.com/medline/citation/19616867/Drastic_increase_of_myosin_light_chain_MLC_2_in_senescent_skeletal_muscle_indicates_fast_to_slow_fibre_transition_in_sarcopenia_of_old_age_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0171-9335(09)00268-4 DB - PRIME DP - Unbound Medicine ER -