Balance dysfunction resulting from acute inner ear energy failure is caused primarily by vestibular hair cell damage.J Neurosci Res. 2010 May 01; 88(6):1262-72.JN
Inner ear energy failure is associated with disorders such as inner ear ischemia. Recently, we used the mitochondrial toxin 3-nitropropionic acid (3-NP) to establish an animal model of inner ear energy failure that presents with auditory dysfunction. Here we investigated the mechanisms underlying balance disorders in the 3-NP animal model. Spontaneous nystagmus peaked 6 hr after treatment with either 300 mM or 500 mM 3-NP. The nystagmus attenuated gradually and disappeared 3 days after 3-NP treatment. A caloric test using ice water was performed to evaluate residual vestibular function 7 days after 3-NP treatment. The response to caloric stimulation was reduced to approximately 40% of the response of the untreated ear following 300 mM 3-NP and was undetectable following 500 mM 3-NP. Structural changes in the peripheral vestibular organs were analyzed by light and electron microscopy. Severe loss of stereocilia was observed following 500 mM 3-NP, whereas disorganized and mildly reduced stereocilia were observed following 300 mM 3-NP. There was severe loss and degeneration of vestibular hair cells following 500 mM 3-NP but only slight loss and degeneration of hair cells following 300 mM 3-NP. These results indicate that acute inner ear energy failure causes balance dysfunction mainly by damaging hair cells in the vestibule, which is distinct from the mechanism underlying auditory disorders.