Tags

Type your tag names separated by a space and hit enter

Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect.
Bipolar Disord. 2009 Dec; 11(8):885-96.BD

Abstract

OBJECTIVES

Lithium, valproate, and carbamazepine decrease stimulated brain cyclic-AMP (cAMP) levels. Adenylyl cyclase (AC), of which there are nine membrane-bound isoforms (AC1-AC9), catalyzes the formation of cAMP. We have recently demonstrated preferential inhibition of AC5 by lithium. We now sought to determine whether carbamazepine and valproate also preferentially inhibit specific AC isoforms or decrease cAMP levels via different mechanisms.

METHODS

COS7 cells were transfected with one of AC1-AC9, with or without D1-dopamine receptors. Carbamazepine's and valproate's effect on forskolin- or D1 agonist-stimulated ACs was studied. The effect of Mg(2+) on lithium's inhibition was studied in membrane-enriched fraction from COS7 cells co-expressing AC5 and D1 receptors. AC5 knockout mice were tested for a behavioral phenotype similar to that of lithium treatment.

RESULTS

Carbamazepine preferentially inhibited forskolin-stimulated AC5 and AC1 and all D1 agonist-stimulated ACs, with AC5 and AC7 being the most sensitive. When compared to 1 or 3 mM Mg(2+), 10 mM Mg(2+) reduced lithium-induced AC5 inhibition by 70%. In silico modeling suggests that among AC isoforms carbamazepine preferentially affects AC1 and AC5 by interacting with the catechol-estrogen site. Valproate did not affect any forskolin- or D1 receptor-stimulated AC. AC5 knockout mice responded similarly to antidepressant- or lithium-treated wild-types in the forced-swim test but not in the amphetamine-induced hyperactivity mania model.

CONCLUSIONS

Lithium and carbamazepine preferentially inhibit AC5, albeit via different mechanisms. Lithium competes with Mg(2+), which is essential for AC activity; carbamazepine competes for AC's catechol-estrogen site. Antidepressant-like behavior of AC5 knockout mice in the forced-swim test supports the notion that AC5 inhibition is involved in the antidepressant effect of lithium and carbamazepine. The effect of lithium and carbamazepine to lower cAMP formation in AC5-rich dopaminergic brain regions suggests that D1-dopamine receptors in these regions are involved in the antidepressant effect of mood stabilizers.

Authors+Show Affiliations

Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

19922557

Citation

Mann, Liad, et al. "Inhibition of Specific Adenylyl Cyclase Isoforms By Lithium and Carbamazepine, but Not Valproate, May Be Related to Their Antidepressant Effect." Bipolar Disorders, vol. 11, no. 8, 2009, pp. 885-96.
Mann L, Heldman E, Bersudsky Y, et al. Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect. Bipolar Disord. 2009;11(8):885-96.
Mann, L., Heldman, E., Bersudsky, Y., Vatner, S. F., Ishikawa, Y., Almog, O., Belmaker, R. H., & Agam, G. (2009). Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect. Bipolar Disorders, 11(8), 885-96. https://doi.org/10.1111/j.1399-5618.2009.00762.x
Mann L, et al. Inhibition of Specific Adenylyl Cyclase Isoforms By Lithium and Carbamazepine, but Not Valproate, May Be Related to Their Antidepressant Effect. Bipolar Disord. 2009;11(8):885-96. PubMed PMID: 19922557.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect. AU - Mann,Liad, AU - Heldman,Eliahu, AU - Bersudsky,Yuly, AU - Vatner,Stephen F, AU - Ishikawa,Yoshihiro, AU - Almog,Orna, AU - Belmaker,Robert H, AU - Agam,Galila, PY - 2009/11/20/entrez PY - 2009/11/20/pubmed PY - 2010/1/28/medline SP - 885 EP - 96 JF - Bipolar disorders JO - Bipolar Disord VL - 11 IS - 8 N2 - OBJECTIVES: Lithium, valproate, and carbamazepine decrease stimulated brain cyclic-AMP (cAMP) levels. Adenylyl cyclase (AC), of which there are nine membrane-bound isoforms (AC1-AC9), catalyzes the formation of cAMP. We have recently demonstrated preferential inhibition of AC5 by lithium. We now sought to determine whether carbamazepine and valproate also preferentially inhibit specific AC isoforms or decrease cAMP levels via different mechanisms. METHODS: COS7 cells were transfected with one of AC1-AC9, with or without D1-dopamine receptors. Carbamazepine's and valproate's effect on forskolin- or D1 agonist-stimulated ACs was studied. The effect of Mg(2+) on lithium's inhibition was studied in membrane-enriched fraction from COS7 cells co-expressing AC5 and D1 receptors. AC5 knockout mice were tested for a behavioral phenotype similar to that of lithium treatment. RESULTS: Carbamazepine preferentially inhibited forskolin-stimulated AC5 and AC1 and all D1 agonist-stimulated ACs, with AC5 and AC7 being the most sensitive. When compared to 1 or 3 mM Mg(2+), 10 mM Mg(2+) reduced lithium-induced AC5 inhibition by 70%. In silico modeling suggests that among AC isoforms carbamazepine preferentially affects AC1 and AC5 by interacting with the catechol-estrogen site. Valproate did not affect any forskolin- or D1 receptor-stimulated AC. AC5 knockout mice responded similarly to antidepressant- or lithium-treated wild-types in the forced-swim test but not in the amphetamine-induced hyperactivity mania model. CONCLUSIONS: Lithium and carbamazepine preferentially inhibit AC5, albeit via different mechanisms. Lithium competes with Mg(2+), which is essential for AC activity; carbamazepine competes for AC's catechol-estrogen site. Antidepressant-like behavior of AC5 knockout mice in the forced-swim test supports the notion that AC5 inhibition is involved in the antidepressant effect of lithium and carbamazepine. The effect of lithium and carbamazepine to lower cAMP formation in AC5-rich dopaminergic brain regions suggests that D1-dopamine receptors in these regions are involved in the antidepressant effect of mood stabilizers. SN - 1399-5618 UR - https://www.unboundmedicine.com/medline/citation/19922557/Inhibition_of_specific_adenylyl_cyclase_isoforms_by_lithium_and_carbamazepine_but_not_valproate_may_be_related_to_their_antidepressant_effect_ L2 - https://doi.org/10.1111/j.1399-5618.2009.00762.x DB - PRIME DP - Unbound Medicine ER -