Tags

Type your tag names separated by a space and hit enter

Involvement of the bone morphogenetic protein system in endothelin- and aldosterone-induced cell proliferation of pulmonary arterial smooth muscle cells isolated from human patients with pulmonary arterial hypertension.
Hypertens Res. 2010 May; 33(5):435-45.HR

Abstract

Recent genetic studies have uncovered a link between familial and idiopathic pulmonary arterial hypertension (PAH) and germline mutations in the bone morphogenetic protein type-II receptor (BMPRII). The pathology of PAH is characterized by remodeling of the pulmonary arteries due to pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Although increased endothelial injury and impaired suppression of PASMC proliferation are both critical for the cellular pathogenesis of PAH, a detailed molecular mechanism underlying PAH has yet to be elucidated. In the present study, we investigated the roles of the BMP system and other vasoactive factors associated with PAH (including endothelin (ET), angiotensin II (Ang II) and aldosterone) in the mitotic actions of PASMCs isolated from idiopathic and secondary PAH lungs. ET1 and aldosterone stimulated PASMC proliferation of idiopathic PAH more effectively than secondary PAH, whereas Ang II and ET3 failed to activate mitosis in either of the PASMC cell type. The effects of ET1 and aldosterone were blocked by bosentan, an ET type-A/B receptor (ETA/BR) antagonist, and eplerenone, a selective mineralocorticoid receptor (MR) blocker, respectively. Among the BMP ligands examined, BMP-2 and BMP-7, but not BMP-4 or BMP-6, significantly increased cell mitosis in both PASMC cell types. Notably, ET1- and aldosterone-induced mitosis and mitogen-activated protein kinase phosphorylation were significantly increased in the presence of BMP-2 and BMP-7 in PASMCs isolated from idiopathic PAH, although additive effects were not observed in PASMCs isolated from secondary PAH. Inhibition of extracellular signal-regulated kinase 1 (ERK1)/ERK2 signaling suppressed basal-, ET1- and aldosterone-induced PASMC mitosis more potently than that of stress-activated protein kinase/c-Jun NH2-terminal kinase inhibition. Given the fact that BMP-2 and BMP-7 upregulated ETA/BR and MR expression and that BMP-2 decreased 11betaHSD2 (11beta-hydroxysteroid dehydrogenase type 2) levels in PASMCs isolated from idiopathic PAH, BMPR-Smad signaling may have a key role in amplifying the ETA/BR and/or MR-ERK signaling in PASMCs of the PAH lung. Collectively, the functional link between BMP and ET and/or the MR system may be involved in the progress of PASMC mitosis, ultimately leading to the development of clinical PAH.

Authors+Show Affiliations

Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama, Japan.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

20186146

Citation

Yamanaka, Ryutaro, et al. "Involvement of the Bone Morphogenetic Protein System in Endothelin- and Aldosterone-induced Cell Proliferation of Pulmonary Arterial Smooth Muscle Cells Isolated From Human Patients With Pulmonary Arterial Hypertension." Hypertension Research : Official Journal of the Japanese Society of Hypertension, vol. 33, no. 5, 2010, pp. 435-45.
Yamanaka R, Otsuka F, Nakamura K, et al. Involvement of the bone morphogenetic protein system in endothelin- and aldosterone-induced cell proliferation of pulmonary arterial smooth muscle cells isolated from human patients with pulmonary arterial hypertension. Hypertens Res. 2010;33(5):435-45.
Yamanaka, R., Otsuka, F., Nakamura, K., Yamashita, M., Otani, H., Takeda, M., Matsumoto, Y., Kusano, K. F., Ito, H., & Makino, H. (2010). Involvement of the bone morphogenetic protein system in endothelin- and aldosterone-induced cell proliferation of pulmonary arterial smooth muscle cells isolated from human patients with pulmonary arterial hypertension. Hypertension Research : Official Journal of the Japanese Society of Hypertension, 33(5), 435-45. https://doi.org/10.1038/hr.2010.16
Yamanaka R, et al. Involvement of the Bone Morphogenetic Protein System in Endothelin- and Aldosterone-induced Cell Proliferation of Pulmonary Arterial Smooth Muscle Cells Isolated From Human Patients With Pulmonary Arterial Hypertension. Hypertens Res. 2010;33(5):435-45. PubMed PMID: 20186146.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Involvement of the bone morphogenetic protein system in endothelin- and aldosterone-induced cell proliferation of pulmonary arterial smooth muscle cells isolated from human patients with pulmonary arterial hypertension. AU - Yamanaka,Ryutaro, AU - Otsuka,Fumio, AU - Nakamura,Kazufumi, AU - Yamashita,Misuzu, AU - Otani,Hiroyuki, AU - Takeda,Masaya, AU - Matsumoto,Yoshinori, AU - Kusano,Kengo F, AU - Ito,Hiroshi, AU - Makino,Hirofumi, Y1 - 2010/02/26/ PY - 2010/2/27/entrez PY - 2010/2/27/pubmed PY - 2010/7/27/medline SP - 435 EP - 45 JF - Hypertension research : official journal of the Japanese Society of Hypertension JO - Hypertens Res VL - 33 IS - 5 N2 - Recent genetic studies have uncovered a link between familial and idiopathic pulmonary arterial hypertension (PAH) and germline mutations in the bone morphogenetic protein type-II receptor (BMPRII). The pathology of PAH is characterized by remodeling of the pulmonary arteries due to pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Although increased endothelial injury and impaired suppression of PASMC proliferation are both critical for the cellular pathogenesis of PAH, a detailed molecular mechanism underlying PAH has yet to be elucidated. In the present study, we investigated the roles of the BMP system and other vasoactive factors associated with PAH (including endothelin (ET), angiotensin II (Ang II) and aldosterone) in the mitotic actions of PASMCs isolated from idiopathic and secondary PAH lungs. ET1 and aldosterone stimulated PASMC proliferation of idiopathic PAH more effectively than secondary PAH, whereas Ang II and ET3 failed to activate mitosis in either of the PASMC cell type. The effects of ET1 and aldosterone were blocked by bosentan, an ET type-A/B receptor (ETA/BR) antagonist, and eplerenone, a selective mineralocorticoid receptor (MR) blocker, respectively. Among the BMP ligands examined, BMP-2 and BMP-7, but not BMP-4 or BMP-6, significantly increased cell mitosis in both PASMC cell types. Notably, ET1- and aldosterone-induced mitosis and mitogen-activated protein kinase phosphorylation were significantly increased in the presence of BMP-2 and BMP-7 in PASMCs isolated from idiopathic PAH, although additive effects were not observed in PASMCs isolated from secondary PAH. Inhibition of extracellular signal-regulated kinase 1 (ERK1)/ERK2 signaling suppressed basal-, ET1- and aldosterone-induced PASMC mitosis more potently than that of stress-activated protein kinase/c-Jun NH2-terminal kinase inhibition. Given the fact that BMP-2 and BMP-7 upregulated ETA/BR and MR expression and that BMP-2 decreased 11betaHSD2 (11beta-hydroxysteroid dehydrogenase type 2) levels in PASMCs isolated from idiopathic PAH, BMPR-Smad signaling may have a key role in amplifying the ETA/BR and/or MR-ERK signaling in PASMCs of the PAH lung. Collectively, the functional link between BMP and ET and/or the MR system may be involved in the progress of PASMC mitosis, ultimately leading to the development of clinical PAH. SN - 1348-4214 UR - https://www.unboundmedicine.com/medline/citation/20186146/Involvement_of_the_bone_morphogenetic_protein_system_in_endothelin__and_aldosterone_induced_cell_proliferation_of_pulmonary_arterial_smooth_muscle_cells_isolated_from_human_patients_with_pulmonary_arterial_hypertension_ L2 - http://www.diseaseinfosearch.org/result/6088 DB - PRIME DP - Unbound Medicine ER -