Tags

Type your tag names separated by a space and hit enter

Disruption of shape complementarity in the ribosomal protein L1-RNA contact region does not hinder specific recognition of the RNA target site.
J Mol Recognit. 2011 Jul-Aug; 24(4):524-32.JM

Abstract

The formation of a specific and stable complex between two (macro)molecules implies complementary contact surface regions. We used ribosomal protein L1, which specifically binds a target site on 23S rRNA, to study the influence of surface modifications on the protein-RNA affinity. The threonine residue in the universally conserved triad Thr-Met-Gly significant for RNA recognition and binding was substituted by phenylalanine, valine and alanine, respectively. The crystal structure of the mutant Thr217Val of the isolated domain I of L1 from Thermus thermophilus (TthL1) was determined. This structure and that of two other mutants, which had been determined earlier, were analysed and compared with the structure of the wild type L1 proteins. The influence of structural changes in the mutant L1 proteins on their affinity for the specific 23S rRNA fragment was tested by kinetic experiments using surface plasmon resonance (SPR) biosensor analysis. Association rate constants undergo minor changes, whereas dissociation rate constants displayed significantly higher values in comparison with that for the wild type protein. The analysed L1 mutants recognize the specific RNA target site, but the mutant L1-23S rRNA complexes are less stable compared to the wild type complexes.

Authors+Show Affiliations

Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Moscow, Russia.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

20740692

Citation

Kostareva, Olga, et al. "Disruption of Shape Complementarity in the Ribosomal Protein L1-RNA Contact Region Does Not Hinder Specific Recognition of the RNA Target Site." Journal of Molecular Recognition : JMR, vol. 24, no. 4, 2011, pp. 524-32.
Kostareva O, Tishchenko S, Nikonova E, et al. Disruption of shape complementarity in the ribosomal protein L1-RNA contact region does not hinder specific recognition of the RNA target site. J Mol Recognit. 2011;24(4):524-32.
Kostareva, O., Tishchenko, S., Nikonova, E., Kljashtorny, V., Nevskaya, N., Nikulin, A., Sycheva, A., Moshkovskii, S., Piendl, W., Garber, M., & Nikonov, S. (2011). Disruption of shape complementarity in the ribosomal protein L1-RNA contact region does not hinder specific recognition of the RNA target site. Journal of Molecular Recognition : JMR, 24(4), 524-32. https://doi.org/10.1002/jmr.1063
Kostareva O, et al. Disruption of Shape Complementarity in the Ribosomal Protein L1-RNA Contact Region Does Not Hinder Specific Recognition of the RNA Target Site. J Mol Recognit. 2011 Jul-Aug;24(4):524-32. PubMed PMID: 20740692.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Disruption of shape complementarity in the ribosomal protein L1-RNA contact region does not hinder specific recognition of the RNA target site. AU - Kostareva,Olga, AU - Tishchenko,Svetlana, AU - Nikonova,Ekaterina, AU - Kljashtorny,Vladislav, AU - Nevskaya,Natalia, AU - Nikulin,Alexei, AU - Sycheva,Anna, AU - Moshkovskii,Sergei, AU - Piendl,Wolfgang, AU - Garber,Maria, AU - Nikonov,Stanislav, Y1 - 2010/08/25/ PY - 2010/02/16/received PY - 2010/04/05/revised PY - 2010/05/22/accepted PY - 2010/8/27/entrez PY - 2010/8/27/pubmed PY - 2011/9/2/medline SP - 524 EP - 32 JF - Journal of molecular recognition : JMR JO - J Mol Recognit VL - 24 IS - 4 N2 - The formation of a specific and stable complex between two (macro)molecules implies complementary contact surface regions. We used ribosomal protein L1, which specifically binds a target site on 23S rRNA, to study the influence of surface modifications on the protein-RNA affinity. The threonine residue in the universally conserved triad Thr-Met-Gly significant for RNA recognition and binding was substituted by phenylalanine, valine and alanine, respectively. The crystal structure of the mutant Thr217Val of the isolated domain I of L1 from Thermus thermophilus (TthL1) was determined. This structure and that of two other mutants, which had been determined earlier, were analysed and compared with the structure of the wild type L1 proteins. The influence of structural changes in the mutant L1 proteins on their affinity for the specific 23S rRNA fragment was tested by kinetic experiments using surface plasmon resonance (SPR) biosensor analysis. Association rate constants undergo minor changes, whereas dissociation rate constants displayed significantly higher values in comparison with that for the wild type protein. The analysed L1 mutants recognize the specific RNA target site, but the mutant L1-23S rRNA complexes are less stable compared to the wild type complexes. SN - 1099-1352 UR - https://www.unboundmedicine.com/medline/citation/20740692/Disruption_of_shape_complementarity_in_the_ribosomal_protein_L1_RNA_contact_region_does_not_hinder_specific_recognition_of_the_RNA_target_site_ L2 - https://doi.org/10.1002/jmr.1063 DB - PRIME DP - Unbound Medicine ER -