Tags

Type your tag names separated by a space and hit enter

Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation.
Appl Microbiol Biotechnol. 2010 Nov; 88(5):1215-21.AM

Abstract

A yeast with the xylose isomerase (XI) pathway was constructed by the multicopy integration of XI overexpression cassettes into the genome of the Saccharomyces cerevisiae MT8-1 strain. The resulting yeast strain successfully produced ethanol from both xylose as the sole carbon source and a mixed sugar, consisting of xylose and glucose, without any adaptation procedure. Ethanol yields in the fermentation from xylose and mixed sugar were 61.9% and 62.2% of the theoretical carbon recovery, respectively. Knockout of GRE3, a gene encoding nonspecific aldose reductase, of the host yeast strain improved the fermentation profile. Not only specific ethanol production rates but also xylose consumption rates was improved more than twice that of xylose-metabolizing yeast with the XI pathway using GRE3 active yeast as the host strain. In addition, it was demonstrated that xylitol in the medium exhibits a concentration-dependent inhibition effect on the ethanol production from xylose with the yeast harboring the XI-based xylose metabolic pathway. From our findings, the combination of XI-pathway integration and GRE3 knockout could be result in a consolidated xylose assimilation pathway and increased ethanol productivity.

Authors+Show Affiliations

Department of Chemical and Environmental Engineering, Gunma University, Kiryu, Japan.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

20853104

Citation

Tanino, Takanori, et al. "Construction of a Xylose-metabolizing Yeast By Genome Integration of Xylose Isomerase Gene and Investigation of the Effect of Xylitol On Fermentation." Applied Microbiology and Biotechnology, vol. 88, no. 5, 2010, pp. 1215-21.
Tanino T, Hotta A, Ito T, et al. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl Microbiol Biotechnol. 2010;88(5):1215-21.
Tanino, T., Hotta, A., Ito, T., Ishii, J., Yamada, R., Hasunuma, T., Ogino, C., Ohmura, N., Ohshima, T., & Kondo, A. (2010). Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Applied Microbiology and Biotechnology, 88(5), 1215-21. https://doi.org/10.1007/s00253-010-2870-2
Tanino T, et al. Construction of a Xylose-metabolizing Yeast By Genome Integration of Xylose Isomerase Gene and Investigation of the Effect of Xylitol On Fermentation. Appl Microbiol Biotechnol. 2010;88(5):1215-21. PubMed PMID: 20853104.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. AU - Tanino,Takanori, AU - Hotta,Atsushi, AU - Ito,Tomonori, AU - Ishii,Jun, AU - Yamada,Ryosuke, AU - Hasunuma,Tomohisa, AU - Ogino,Chiaki, AU - Ohmura,Naoto, AU - Ohshima,Takayuki, AU - Kondo,Akihiko, Y1 - 2010/09/19/ PY - 2010/07/01/received PY - 2010/08/25/accepted PY - 2010/08/23/revised PY - 2010/9/21/entrez PY - 2010/9/21/pubmed PY - 2011/3/1/medline SP - 1215 EP - 21 JF - Applied microbiology and biotechnology JO - Appl Microbiol Biotechnol VL - 88 IS - 5 N2 - A yeast with the xylose isomerase (XI) pathway was constructed by the multicopy integration of XI overexpression cassettes into the genome of the Saccharomyces cerevisiae MT8-1 strain. The resulting yeast strain successfully produced ethanol from both xylose as the sole carbon source and a mixed sugar, consisting of xylose and glucose, without any adaptation procedure. Ethanol yields in the fermentation from xylose and mixed sugar were 61.9% and 62.2% of the theoretical carbon recovery, respectively. Knockout of GRE3, a gene encoding nonspecific aldose reductase, of the host yeast strain improved the fermentation profile. Not only specific ethanol production rates but also xylose consumption rates was improved more than twice that of xylose-metabolizing yeast with the XI pathway using GRE3 active yeast as the host strain. In addition, it was demonstrated that xylitol in the medium exhibits a concentration-dependent inhibition effect on the ethanol production from xylose with the yeast harboring the XI-based xylose metabolic pathway. From our findings, the combination of XI-pathway integration and GRE3 knockout could be result in a consolidated xylose assimilation pathway and increased ethanol productivity. SN - 1432-0614 UR - https://www.unboundmedicine.com/medline/citation/20853104/Construction_of_a_xylose_metabolizing_yeast_by_genome_integration_of_xylose_isomerase_gene_and_investigation_of_the_effect_of_xylitol_on_fermentation_ L2 - https://dx.doi.org/10.1007/s00253-010-2870-2 DB - PRIME DP - Unbound Medicine ER -