Tags

Type your tag names separated by a space and hit enter

Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity.
Pflugers Arch. 2011 Jan; 461(1):123-39.PA

Abstract

Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.

Authors+Show Affiliations

Département de Pharmacologie et de Toxicologie, Université de Lausanne, Rue du Bugnon 27, Lausanne, Switzerland.No affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

20924599

Citation

Blanchard, Maxime G., and Stephan Kellenberger. "Effect of a Temperature Increase in the Non-noxious Range On Proton-evoked ASIC and TRPV1 Activity." Pflugers Archiv : European Journal of Physiology, vol. 461, no. 1, 2011, pp. 123-39.
Blanchard MG, Kellenberger S. Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity. Pflugers Arch. 2011;461(1):123-39.
Blanchard, M. G., & Kellenberger, S. (2011). Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity. Pflugers Archiv : European Journal of Physiology, 461(1), 123-39. https://doi.org/10.1007/s00424-010-0884-3
Blanchard MG, Kellenberger S. Effect of a Temperature Increase in the Non-noxious Range On Proton-evoked ASIC and TRPV1 Activity. Pflugers Arch. 2011;461(1):123-39. PubMed PMID: 20924599.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity. AU - Blanchard,Maxime G, AU - Kellenberger,Stephan, Y1 - 2010/10/06/ PY - 2010/06/23/received PY - 2010/09/15/accepted PY - 2010/09/15/revised PY - 2010/10/7/entrez PY - 2010/10/7/pubmed PY - 2011/6/24/medline SP - 123 EP - 39 JF - Pflugers Archiv : European journal of physiology JO - Pflugers Arch VL - 461 IS - 1 N2 - Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6. SN - 1432-2013 UR - https://www.unboundmedicine.com/medline/citation/20924599/Effect_of_a_temperature_increase_in_the_non_noxious_range_on_proton_evoked_ASIC_and_TRPV1_activity_ L2 - https://dx.doi.org/10.1007/s00424-010-0884-3 DB - PRIME DP - Unbound Medicine ER -