Tags

Type your tag names separated by a space and hit enter

Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor α in the nigrostriatal dopaminergic circuit of adult mice.
Exp Neurol. 2011 Feb; 227(2):237-51.EN

Abstract

Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine, has been implicated in both neuronal death and survival in Parkinson's disease (PD). The substantia nigra (SN), a CNS region affected in PD, is particularly susceptible to inflammatory insults and possesses the highest density of microglial cells, but the effects of inflammation and in particular TNF-α on neuronal survival in this region remains controversial. Using adenoviral vectors, the CRE/loxP system and hypomorphic mice, we achieved chronic expression of two levels of TNF-α in the SN of adult mice. Chronic low expression of TNF-α levels reduced the nigrostriatal neurodegeneration mediated by intrastriatal 6-hydroxydopamine administration. Protective effects of low TNF-α level could be mediated by TNF-R1, GDNF, and IGF-1 in the SN and SOD activity in the striatum (ST). On the contrary, chronic expression of high levels of TNF-α induced progressive neuronal loss (63% at 20 days and 75% at 100 days). This effect was accompanied by gliosis and an inflammatory infiltrate composed almost exclusively by monocytes/macrophages. The finding that chronic high TNF-α had a slow and progressive neurodegenerative effect in the SN provides an animal model of PD mediated by the chronic expression of a single cytokine. In addition, it supports the view that cytokines are not detrimental or beneficial by themselves, i.e., their level and time of expression among other factors can determine its final effect on CNS damage or protection. These data support the view that new anti-parkinsonian treatments based on anti-inflammatory therapies should consider these dual effects of cytokines on their design.

Authors+Show Affiliations

Leloir Institute, CONICET, University of Buenos Aires, Buenos Aires (1405), Argentina.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Comparative Study
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

21093436

Citation

Chertoff, M, et al. "Neuroprotective and Neurodegenerative Effects of the Chronic Expression of Tumor Necrosis Factor Α in the Nigrostriatal Dopaminergic Circuit of Adult Mice." Experimental Neurology, vol. 227, no. 2, 2011, pp. 237-51.
Chertoff M, Di Paolo N, Schoeneberg A, et al. Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor α in the nigrostriatal dopaminergic circuit of adult mice. Exp Neurol. 2011;227(2):237-51.
Chertoff, M., Di Paolo, N., Schoeneberg, A., Depino, A., Ferrari, C., Wurst, W., Pfizenmaier, K., Eisel, U., & Pitossi, F. (2011). Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor α in the nigrostriatal dopaminergic circuit of adult mice. Experimental Neurology, 227(2), 237-51. https://doi.org/10.1016/j.expneurol.2010.11.010
Chertoff M, et al. Neuroprotective and Neurodegenerative Effects of the Chronic Expression of Tumor Necrosis Factor Α in the Nigrostriatal Dopaminergic Circuit of Adult Mice. Exp Neurol. 2011;227(2):237-51. PubMed PMID: 21093436.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor α in the nigrostriatal dopaminergic circuit of adult mice. AU - Chertoff,M, AU - Di Paolo,N, AU - Schoeneberg,A, AU - Depino,A, AU - Ferrari,C, AU - Wurst,W, AU - Pfizenmaier,K, AU - Eisel,U, AU - Pitossi,F, Y1 - 2010/11/17/ PY - 2009/12/29/received PY - 2010/09/20/revised PY - 2010/11/09/accepted PY - 2010/11/25/entrez PY - 2010/11/26/pubmed PY - 2011/2/15/medline SP - 237 EP - 51 JF - Experimental neurology JO - Exp Neurol VL - 227 IS - 2 N2 - Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine, has been implicated in both neuronal death and survival in Parkinson's disease (PD). The substantia nigra (SN), a CNS region affected in PD, is particularly susceptible to inflammatory insults and possesses the highest density of microglial cells, but the effects of inflammation and in particular TNF-α on neuronal survival in this region remains controversial. Using adenoviral vectors, the CRE/loxP system and hypomorphic mice, we achieved chronic expression of two levels of TNF-α in the SN of adult mice. Chronic low expression of TNF-α levels reduced the nigrostriatal neurodegeneration mediated by intrastriatal 6-hydroxydopamine administration. Protective effects of low TNF-α level could be mediated by TNF-R1, GDNF, and IGF-1 in the SN and SOD activity in the striatum (ST). On the contrary, chronic expression of high levels of TNF-α induced progressive neuronal loss (63% at 20 days and 75% at 100 days). This effect was accompanied by gliosis and an inflammatory infiltrate composed almost exclusively by monocytes/macrophages. The finding that chronic high TNF-α had a slow and progressive neurodegenerative effect in the SN provides an animal model of PD mediated by the chronic expression of a single cytokine. In addition, it supports the view that cytokines are not detrimental or beneficial by themselves, i.e., their level and time of expression among other factors can determine its final effect on CNS damage or protection. These data support the view that new anti-parkinsonian treatments based on anti-inflammatory therapies should consider these dual effects of cytokines on their design. SN - 1090-2430 UR - https://www.unboundmedicine.com/medline/citation/21093436/Neuroprotective_and_neurodegenerative_effects_of_the_chronic_expression_of_tumor_necrosis_factor_α_in_the_nigrostriatal_dopaminergic_circuit_of_adult_mice_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0014-4886(10)00411-5 DB - PRIME DP - Unbound Medicine ER -