Tags

Type your tag names separated by a space and hit enter

Analyzing the interplay between single cell rheology and force generation through large deformation finite element models.
Biomech Model Mechanobiol. 2011 Dec; 10(6):813-30.BM

Abstract

In this study, experimental results of single cell spreading between two parallel microplates are exploited through finite element modeling. Axisymmetric computations at finite strains are performed to extract the mechanical properties of the cell which can account for cell shape evolution and traction force generation. Our model includes two distinct components representing the cortex associated with the bilayer membrane on the one hand, and the rest of the cell on the other hand. The former is modeled as a homogeneous hyperelastic material described by a slightly compressible Gent strain energy function, while the latter is idealized either as a quasi-incompressible Newtonian fluid or as another homogeneous hyperelastic material. The kinetics of spreading is ensured by a stapling procedure defined from experimental observations. Material parameters are then optimized to match the simulation closely with the experimental data. In particular, the elastic modulus of the cortex is estimated at about 1,000 Pa in both models, while the cell interior is characterized by a viscosity of 1,000 Pa.s in the biphasic model, or by an elastic modulus of about 100 Pa in the hyperelastic one. These results are in good agreement with G(') and G('') measurements carried out previously in the same parallel plates setup and estimated at the typical rate of cell straining. Moreover, stresses are found to concentrate at the edge of the cell-substrate contact area. These observations allow explaining the relationship between cell spreading and force increase since spreading and the consequent straining of the cell mechanical structure could be the source of the force applied by the cell on its substrate. They could also explain, in a very simple manner, why force-sensitive focal contacts concentrate at the cell edges.

Authors+Show Affiliations

Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Bd Descartes, 77454 Marne-la-Vallée, France. eric.monteiro@univ-paris-est.frNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

21181227

Citation

Monteiro, E, et al. "Analyzing the Interplay Between Single Cell Rheology and Force Generation Through Large Deformation Finite Element Models." Biomechanics and Modeling in Mechanobiology, vol. 10, no. 6, 2011, pp. 813-30.
Monteiro E, Yvonnet J, He QC, et al. Analyzing the interplay between single cell rheology and force generation through large deformation finite element models. Biomech Model Mechanobiol. 2011;10(6):813-30.
Monteiro, E., Yvonnet, J., He, Q. C., Cardoso, O., & Asnacios, A. (2011). Analyzing the interplay between single cell rheology and force generation through large deformation finite element models. Biomechanics and Modeling in Mechanobiology, 10(6), 813-30. https://doi.org/10.1007/s10237-010-0276-9
Monteiro E, et al. Analyzing the Interplay Between Single Cell Rheology and Force Generation Through Large Deformation Finite Element Models. Biomech Model Mechanobiol. 2011;10(6):813-30. PubMed PMID: 21181227.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Analyzing the interplay between single cell rheology and force generation through large deformation finite element models. AU - Monteiro,E, AU - Yvonnet,J, AU - He,Q-C, AU - Cardoso,O, AU - Asnacios,A, Y1 - 2010/12/23/ PY - 2010/07/12/received PY - 2010/11/26/accepted PY - 2010/12/25/entrez PY - 2010/12/25/pubmed PY - 2012/2/23/medline SP - 813 EP - 30 JF - Biomechanics and modeling in mechanobiology JO - Biomech Model Mechanobiol VL - 10 IS - 6 N2 - In this study, experimental results of single cell spreading between two parallel microplates are exploited through finite element modeling. Axisymmetric computations at finite strains are performed to extract the mechanical properties of the cell which can account for cell shape evolution and traction force generation. Our model includes two distinct components representing the cortex associated with the bilayer membrane on the one hand, and the rest of the cell on the other hand. The former is modeled as a homogeneous hyperelastic material described by a slightly compressible Gent strain energy function, while the latter is idealized either as a quasi-incompressible Newtonian fluid or as another homogeneous hyperelastic material. The kinetics of spreading is ensured by a stapling procedure defined from experimental observations. Material parameters are then optimized to match the simulation closely with the experimental data. In particular, the elastic modulus of the cortex is estimated at about 1,000 Pa in both models, while the cell interior is characterized by a viscosity of 1,000 Pa.s in the biphasic model, or by an elastic modulus of about 100 Pa in the hyperelastic one. These results are in good agreement with G(') and G('') measurements carried out previously in the same parallel plates setup and estimated at the typical rate of cell straining. Moreover, stresses are found to concentrate at the edge of the cell-substrate contact area. These observations allow explaining the relationship between cell spreading and force increase since spreading and the consequent straining of the cell mechanical structure could be the source of the force applied by the cell on its substrate. They could also explain, in a very simple manner, why force-sensitive focal contacts concentrate at the cell edges. SN - 1617-7940 UR - https://www.unboundmedicine.com/medline/citation/21181227/Analyzing_the_interplay_between_single_cell_rheology_and_force_generation_through_large_deformation_finite_element_models_ L2 - https://dx.doi.org/10.1007/s10237-010-0276-9 DB - PRIME DP - Unbound Medicine ER -