Tags

Type your tag names separated by a space and hit enter

Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions.
Ann Intern Med. 2011 May 03; 154(9):593-601.AIM

Abstract

BACKGROUND

Haiti is in the midst of a cholera epidemic. Surveillance data for formulating models of the epidemic are limited, but such models can aid understanding of epidemic processes and help define control strategies.

OBJECTIVE

To predict, by using a mathematical model, the sequence and timing of regional cholera epidemics in Haiti and explore the potential effects of disease-control strategies.

DESIGN

Compartmental mathematical model allowing person-to-person and waterborne transmission of cholera. Within- and between-region epidemic spread was modeled, with the latter dependent on population sizes and distance between regional centroids (a "gravity" model).

SETTING

Haiti, 2010 to 2011.

DATA SOURCES

Haitian hospitalization data, 2009 census data, literature-derived parameter values, and model calibration.

MEASUREMENTS

Dates of epidemic onset and hospitalizations.

RESULTS

The plausible range for cholera's basic reproductive number (R(0), defined as the number of secondary cases per primary case in a susceptible population without intervention) was 2.06 to 2.78. The order and timing of regional cholera outbreaks predicted by the gravity model were closely correlated with empirical observations. Analysis of changes in disease dynamics over time suggests that public health interventions have substantially affected this epidemic. A limited vaccine supply provided late in the epidemic was projected to have a modest effect.

LIMITATIONS

Assumptions were simplified, which was necessary for modeling. Projections are based on the initial dynamics of the epidemic, which may change.

CONCLUSION

Despite limited surveillance data from the cholera epidemic in Haiti, a model simulating between-region disease transmission according to population and distance closely reproduces reported disease patterns. This model is a tool that planners, policymakers, and medical personnel seeking to manage the epidemic could use immediately.

Authors+Show Affiliations

Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, Ontario, Canada.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

21383314

Citation

Tuite, Ashleigh R., et al. "Cholera Epidemic in Haiti, 2010: Using a Transmission Model to Explain Spatial Spread of Disease and Identify Optimal Control Interventions." Annals of Internal Medicine, vol. 154, no. 9, 2011, pp. 593-601.
Tuite AR, Tien J, Eisenberg M, et al. Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. Ann Intern Med. 2011;154(9):593-601.
Tuite, A. R., Tien, J., Eisenberg, M., Earn, D. J., Ma, J., & Fisman, D. N. (2011). Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. Annals of Internal Medicine, 154(9), 593-601. https://doi.org/10.7326/0003-4819-154-9-201105030-00334
Tuite AR, et al. Cholera Epidemic in Haiti, 2010: Using a Transmission Model to Explain Spatial Spread of Disease and Identify Optimal Control Interventions. Ann Intern Med. 2011 May 3;154(9):593-601. PubMed PMID: 21383314.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. AU - Tuite,Ashleigh R, AU - Tien,Joseph, AU - Eisenberg,Marisa, AU - Earn,David J D, AU - Ma,Junling, AU - Fisman,David N, Y1 - 2011/03/07/ PY - 2011/3/9/entrez PY - 2011/3/9/pubmed PY - 2011/7/19/medline SP - 593 EP - 601 JF - Annals of internal medicine JO - Ann. Intern. Med. VL - 154 IS - 9 N2 - BACKGROUND: Haiti is in the midst of a cholera epidemic. Surveillance data for formulating models of the epidemic are limited, but such models can aid understanding of epidemic processes and help define control strategies. OBJECTIVE: To predict, by using a mathematical model, the sequence and timing of regional cholera epidemics in Haiti and explore the potential effects of disease-control strategies. DESIGN: Compartmental mathematical model allowing person-to-person and waterborne transmission of cholera. Within- and between-region epidemic spread was modeled, with the latter dependent on population sizes and distance between regional centroids (a "gravity" model). SETTING: Haiti, 2010 to 2011. DATA SOURCES: Haitian hospitalization data, 2009 census data, literature-derived parameter values, and model calibration. MEASUREMENTS: Dates of epidemic onset and hospitalizations. RESULTS: The plausible range for cholera's basic reproductive number (R(0), defined as the number of secondary cases per primary case in a susceptible population without intervention) was 2.06 to 2.78. The order and timing of regional cholera outbreaks predicted by the gravity model were closely correlated with empirical observations. Analysis of changes in disease dynamics over time suggests that public health interventions have substantially affected this epidemic. A limited vaccine supply provided late in the epidemic was projected to have a modest effect. LIMITATIONS: Assumptions were simplified, which was necessary for modeling. Projections are based on the initial dynamics of the epidemic, which may change. CONCLUSION: Despite limited surveillance data from the cholera epidemic in Haiti, a model simulating between-region disease transmission according to population and distance closely reproduces reported disease patterns. This model is a tool that planners, policymakers, and medical personnel seeking to manage the epidemic could use immediately. SN - 1539-3704 UR - https://www.unboundmedicine.com/medline/citation/21383314/Cholera_epidemic_in_Haiti_2010:_using_a_transmission_model_to_explain_spatial_spread_of_disease_and_identify_optimal_control_interventions_ L2 - https://www.annals.org/aim/fullarticle/doi/10.7326/0003-4819-154-9-201105030-00334 DB - PRIME DP - Unbound Medicine ER -