Multi-linear regression models predict the effects of water chemistry on acute lead toxicity to Ceriodaphnia dubia and Pimephales promelas.Comp Biochem Physiol C Toxicol Pharmacol. 2011 Sep; 154(3):137-45.CB
The current study examined the acute toxicity of lead (Pb) to Ceriodaphnia dubia and Pimephales promelas in a variety of natural waters. The natural waters were selected to range in pertinent water chemistry parameters such as calcium, pH, total CO(2) and dissolved organic carbon (DOC). Acute toxicity was determined for C. dubia and P. promelas using standard 48h and 96h protocols, respectively. For both organisms acute toxicity varied markedly according to water chemistry, with C. dubia LC50s ranging from 29 to 180μg/L and P. promelas LC50s ranging from 41 to 3598μg/L. Additionally, no Pb toxicity was observed for P. promelas in three alkaline natural waters. With respect to water chemistry parameters, DOC had the strongest protective impact for both organisms. A multi-linear regression (MLR) approach combining previous lab data and the current data was used to identify the relative importance of individual water chemistry components in predicting acute Pb toxicity for both species. As anticipated, the P. promelas best-fit MLR model combined DOC, calcium and pH. Unexpectedly, in the C. dubiaMLR model the importance of pH, TCO(2) and calcium was minimal while DOC and ionic strength were the controlling water quality variables. Adjusted R(2) values of 0.82 and 0.64 for the P. promelas and C. dubia models, respectively, are comparable to previously developed biotic ligand models for other metals.