Tags

Type your tag names separated by a space and hit enter

Sensitivity enhancement in capillary electrophoresis-mass spectrometry of anionic metabolites using a triethylamine-containing background electrolyte and sheath liquid.
Electrophoresis. 2011 Nov; 32(21):3016-24.E

Abstract

Analyte responses in CE-ESI-MS using negative ionization are frequently relatively low, thereby limiting sensitivity in metabolomics applications. In order to enhance the ionization efficiency of anionic metabolites, BGEs and sheath liquids (SLs) of various compositions were evaluated. Pressure-induced infusion and CE-MS experiments showed that addition of triethylamine (TEA) to the BGE and SL enhanced analyte intensities. A BGE consisting of 25 mM TEA (pH 11.7) and an SL of water-methanol (1:1, v/v) containing 5 mM TEA was selected, providing separation and detection of ten representative test metabolites with good reproducibility (migration time RSDs<1%) and linearity (R(2) >0.99). This BGE yielded lower limits of detection (0.7-9.1 μM) for most test compounds when compared with common CE-MS methods using a BGE and SL containing ammonium acetate (NH(4) Ac) (25 and 5 mM, respectively). CE-MS of human urine revealed an average amount of 231 molecular features in negative ionization mode when TEA was used in the BGE and SL, whereas 115 and 102 molecular features were found with an NH(4) Ac-containing BGE and SL, employing a bare fused-silica (BFS) and Polybrene-dextran sulfate-Polybrene (PB-DS-PB)-coated capillary, respectively. With the CE-MS method using TEA, about 170 molecular features were observed that were not detected with the NH(4) Ac-based CE-MS methods. For more than 82% of the molecular features that were detected with the TEA as well as the NH(4) Ac-containg BGEs (i.e. common features), the peak intensities were higher using TEA with gain factors up to 7. Overall, the results demonstrate that BGEs and SLs containing TEA are quite favorable for the analysis of anionic metabolites in CE-MS.

Authors+Show Affiliations

Department of Biomolecular Analysis, Utrecht University, Utrecht, The Netherlands. M.G.M.Kok@uu.nlNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

22002879

Citation

Kok, Miranda G M., et al. "Sensitivity Enhancement in Capillary Electrophoresis-mass Spectrometry of Anionic Metabolites Using a Triethylamine-containing Background Electrolyte and Sheath Liquid." Electrophoresis, vol. 32, no. 21, 2011, pp. 3016-24.
Kok MG, de Jong GJ, Somsen GW. Sensitivity enhancement in capillary electrophoresis-mass spectrometry of anionic metabolites using a triethylamine-containing background electrolyte and sheath liquid. Electrophoresis. 2011;32(21):3016-24.
Kok, M. G., de Jong, G. J., & Somsen, G. W. (2011). Sensitivity enhancement in capillary electrophoresis-mass spectrometry of anionic metabolites using a triethylamine-containing background electrolyte and sheath liquid. Electrophoresis, 32(21), 3016-24. https://doi.org/10.1002/elps.201100271
Kok MG, de Jong GJ, Somsen GW. Sensitivity Enhancement in Capillary Electrophoresis-mass Spectrometry of Anionic Metabolites Using a Triethylamine-containing Background Electrolyte and Sheath Liquid. Electrophoresis. 2011;32(21):3016-24. PubMed PMID: 22002879.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Sensitivity enhancement in capillary electrophoresis-mass spectrometry of anionic metabolites using a triethylamine-containing background electrolyte and sheath liquid. AU - Kok,Miranda G M, AU - de Jong,Gerhardus J, AU - Somsen,Govert W, Y1 - 2011/10/17/ PY - 2011/05/14/received PY - 2011/06/17/revised PY - 2011/06/17/accepted PY - 2011/10/18/entrez PY - 2011/10/18/pubmed PY - 2012/1/13/medline SP - 3016 EP - 24 JF - Electrophoresis JO - Electrophoresis VL - 32 IS - 21 N2 - Analyte responses in CE-ESI-MS using negative ionization are frequently relatively low, thereby limiting sensitivity in metabolomics applications. In order to enhance the ionization efficiency of anionic metabolites, BGEs and sheath liquids (SLs) of various compositions were evaluated. Pressure-induced infusion and CE-MS experiments showed that addition of triethylamine (TEA) to the BGE and SL enhanced analyte intensities. A BGE consisting of 25 mM TEA (pH 11.7) and an SL of water-methanol (1:1, v/v) containing 5 mM TEA was selected, providing separation and detection of ten representative test metabolites with good reproducibility (migration time RSDs<1%) and linearity (R(2) >0.99). This BGE yielded lower limits of detection (0.7-9.1 μM) for most test compounds when compared with common CE-MS methods using a BGE and SL containing ammonium acetate (NH(4) Ac) (25 and 5 mM, respectively). CE-MS of human urine revealed an average amount of 231 molecular features in negative ionization mode when TEA was used in the BGE and SL, whereas 115 and 102 molecular features were found with an NH(4) Ac-containing BGE and SL, employing a bare fused-silica (BFS) and Polybrene-dextran sulfate-Polybrene (PB-DS-PB)-coated capillary, respectively. With the CE-MS method using TEA, about 170 molecular features were observed that were not detected with the NH(4) Ac-based CE-MS methods. For more than 82% of the molecular features that were detected with the TEA as well as the NH(4) Ac-containg BGEs (i.e. common features), the peak intensities were higher using TEA with gain factors up to 7. Overall, the results demonstrate that BGEs and SLs containing TEA are quite favorable for the analysis of anionic metabolites in CE-MS. SN - 1522-2683 UR - https://www.unboundmedicine.com/medline/citation/22002879/Sensitivity_enhancement_in_capillary_electrophoresis_mass_spectrometry_of_anionic_metabolites_using_a_triethylamine_containing_background_electrolyte_and_sheath_liquid_ L2 - https://doi.org/10.1002/elps.201100271 DB - PRIME DP - Unbound Medicine ER -