Citation
Lolicato, Marco, et al. "Tetramerization Dynamics of C-terminal Domain Underlies Isoform-specific cAMP Gating in Hyperpolarization-activated Cyclic Nucleotide-gated Channels." The Journal of Biological Chemistry, vol. 286, no. 52, 2011, pp. 44811-20.
Lolicato M, Nardini M, Gazzarrini S, et al. Tetramerization dynamics of C-terminal domain underlies isoform-specific cAMP gating in hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem. 2011;286(52):44811-20.
Lolicato, M., Nardini, M., Gazzarrini, S., Möller, S., Bertinetti, D., Herberg, F. W., Bolognesi, M., Martin, H., Fasolini, M., Bertrand, J. A., Arrigoni, C., Thiel, G., & Moroni, A. (2011). Tetramerization dynamics of C-terminal domain underlies isoform-specific cAMP gating in hyperpolarization-activated cyclic nucleotide-gated channels. The Journal of Biological Chemistry, 286(52), 44811-20. https://doi.org/10.1074/jbc.M111.297606
Lolicato M, et al. Tetramerization Dynamics of C-terminal Domain Underlies Isoform-specific cAMP Gating in Hyperpolarization-activated Cyclic Nucleotide-gated Channels. J Biol Chem. 2011 Dec 30;286(52):44811-20. PubMed PMID: 22006928.
TY - JOUR
T1 - Tetramerization dynamics of C-terminal domain underlies isoform-specific cAMP gating in hyperpolarization-activated cyclic nucleotide-gated channels.
AU - Lolicato,Marco,
AU - Nardini,Marco,
AU - Gazzarrini,Sabrina,
AU - Möller,Stefan,
AU - Bertinetti,Daniela,
AU - Herberg,Friedrich W,
AU - Bolognesi,Martino,
AU - Martin,Holger,
AU - Fasolini,Marina,
AU - Bertrand,Jay A,
AU - Arrigoni,Cristina,
AU - Thiel,Gerhard,
AU - Moroni,Anna,
Y1 - 2011/10/17/
PY - 2011/10/19/entrez
PY - 2011/10/19/pubmed
PY - 2012/3/1/medline
SP - 44811
EP - 20
JF - The Journal of biological chemistry
JO - J Biol Chem
VL - 286
IS - 52
N2 - Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually activated by hyperpolarization and binding of cAMP to their cyclic nucleotide binding domain (CNBD). HCN isoforms respond differently to cAMP; binding of cAMP shifts activation of HCN2 and HCN4 by 17 mV but shifts that of HCN1 by only 2-4 mV. To explain the peculiarity of HCN1, we solved the crystal structures and performed a biochemical-biophysical characterization of the C-terminal domain (C-linker plus CNBD) of the three isoforms. Our main finding is that tetramerization of the C-terminal domain of HCN1 occurs at basal cAMP concentrations, whereas those of HCN2 and HCN4 require cAMP saturating levels. Therefore, HCN1 responds less markedly than HCN2 and HCN4 to cAMP increase because its CNBD is already partly tetrameric. This is confirmed by voltage clamp experiments showing that the right-shifted position of V(½) in HCN1 is correlated with its propensity to tetramerize in vitro. These data underscore that ligand-induced CNBD tetramerization removes tonic inhibition from the pore of HCN channels.
SN - 1083-351X
UR - https://www.unboundmedicine.com/medline/citation/22006928/Tetramerization_dynamics_of_C_terminal_domain_underlies_isoform_specific_cAMP_gating_in_hyperpolarization_activated_cyclic_nucleotide_gated_channels_
L2 - https://linkinghub.elsevier.com/retrieve/pii/S0021-9258(20)65529-6
DB - PRIME
DP - Unbound Medicine
ER -