Tags

Type your tag names separated by a space and hit enter

Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion.
Magn Reson Imaging 2012; 30(2):171-80MR

Abstract

BACKGROUND AND PURPOSE

Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion.

MATERIALS AND METHODS

A prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason.

RESULTS

The percentage of WM voxels with significant (p<.05) pre-post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus.

CONCLUSIONS

Wild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.

Authors+Show Affiliations

Emergency Medicine, Neurology, Neurosurgery, Community and Preventive Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA. jeff_bazarian@urmc.rochester.eduNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

22079073

Citation

Bazarian, Jeffrey J., et al. "Subject-specific Changes in Brain White Matter On Diffusion Tensor Imaging After Sports-related Concussion." Magnetic Resonance Imaging, vol. 30, no. 2, 2012, pp. 171-80.
Bazarian JJ, Zhu T, Blyth B, et al. Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magn Reson Imaging. 2012;30(2):171-80.
Bazarian, J. J., Zhu, T., Blyth, B., Borrino, A., & Zhong, J. (2012). Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magnetic Resonance Imaging, 30(2), pp. 171-80. doi:10.1016/j.mri.2011.10.001.
Bazarian JJ, et al. Subject-specific Changes in Brain White Matter On Diffusion Tensor Imaging After Sports-related Concussion. Magn Reson Imaging. 2012;30(2):171-80. PubMed PMID: 22079073.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. AU - Bazarian,Jeffrey J, AU - Zhu,Tong, AU - Blyth,Brian, AU - Borrino,Allyson, AU - Zhong,Jianhui, Y1 - 2011/11/12/ PY - 2011/06/20/received PY - 2011/10/05/revised PY - 2011/10/06/accepted PY - 2011/11/15/entrez PY - 2011/11/15/pubmed PY - 2012/5/18/medline SP - 171 EP - 80 JF - Magnetic resonance imaging JO - Magn Reson Imaging VL - 30 IS - 2 N2 - BACKGROUND AND PURPOSE: Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion. MATERIALS AND METHODS: A prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason. RESULTS: The percentage of WM voxels with significant (p<.05) pre-post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus. CONCLUSIONS: Wild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted. SN - 1873-5894 UR - https://www.unboundmedicine.com/medline/citation/22079073/Subject_specific_changes_in_brain_white_matter_on_diffusion_tensor_imaging_after_sports_related_concussion_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0730-725X(11)00384-5 DB - PRIME DP - Unbound Medicine ER -