Tags

Type your tag names separated by a space and hit enter

Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes.
Water Res. 2012 May 01; 46(7):2067-76.WR

Abstract

The mineralization of flumequine, an antimicrobial agent belonging to the first generation of synthetic fluoroquinolones which is detected in natural waters, has been studied by electrochemical advanced oxidation processes (EAOPs) like electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. The experiments were performed in a cell containing a boron-doped diamond (BDD) anode and an air-diffusion cathode to generate H(2)O(2) at constant current. The Fe(2+) ion added to the medium increased the solubility of the drug by the formation of a complex of intense orange colour and also reacted with electrogenerated H(2)O(2) to form hydroxyl radical from Fenton reaction. Oxidant hydroxyl radicals at the BDD surface were produced from water oxidation. A partial mineralization of flumequine in a solution near to saturation with optimum 2.0mM Fe(2+) at pH 3.0 was achieved by EF. The PEF process was more powerful, giving an almost total mineralization with 94-96% total organic carbon removal. Increasing current accelerated both treatments, but with decreasing mineralization current efficiency. Comparative treatments using a real wastewater matrix led to similar degradation degrees. The kinetics for flumequine decay always followed a pseudo-first-order reaction and its rate constant, similar for both EAOPs, raised with increasing current. Generated carboxylic acids like malonic, formic, oxalic and oxamic acids were quantified by ion-exclusion HPLC. Fe(III)-oxalate and Fe(III)-oxamate complexes were the most persistent by-products under EF conditions and their quicker photolysis by UVA light explains the higher oxidation power of PEF. The release of inorganic ions such as F(-), NO(3)(-) and in lesser extent NH(4)(+) was followed by ionic chromatography.

Authors+Show Affiliations

Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

22348999

Citation

Garcia-Segura, Sergi, et al. "Mineralization of Flumequine in Acidic Medium By electro-Fenton and photoelectro-Fenton Processes." Water Research, vol. 46, no. 7, 2012, pp. 2067-76.
Garcia-Segura S, Garrido JA, Rodríguez RM, et al. Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes. Water Res. 2012;46(7):2067-76.
Garcia-Segura, S., Garrido, J. A., Rodríguez, R. M., Cabot, P. L., Centellas, F., Arias, C., & Brillas, E. (2012). Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes. Water Research, 46(7), 2067-76. https://doi.org/10.1016/j.watres.2012.01.019
Garcia-Segura S, et al. Mineralization of Flumequine in Acidic Medium By electro-Fenton and photoelectro-Fenton Processes. Water Res. 2012 May 1;46(7):2067-76. PubMed PMID: 22348999.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes. AU - Garcia-Segura,Sergi, AU - Garrido,José A, AU - Rodríguez,Rosa M, AU - Cabot,Pere L, AU - Centellas,Francesc, AU - Arias,Conchita, AU - Brillas,Enric, Y1 - 2012/02/03/ PY - 2011/11/21/received PY - 2012/01/16/revised PY - 2012/01/18/accepted PY - 2012/2/22/entrez PY - 2012/2/22/pubmed PY - 2012/6/30/medline SP - 2067 EP - 76 JF - Water research JO - Water Res. VL - 46 IS - 7 N2 - The mineralization of flumequine, an antimicrobial agent belonging to the first generation of synthetic fluoroquinolones which is detected in natural waters, has been studied by electrochemical advanced oxidation processes (EAOPs) like electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. The experiments were performed in a cell containing a boron-doped diamond (BDD) anode and an air-diffusion cathode to generate H(2)O(2) at constant current. The Fe(2+) ion added to the medium increased the solubility of the drug by the formation of a complex of intense orange colour and also reacted with electrogenerated H(2)O(2) to form hydroxyl radical from Fenton reaction. Oxidant hydroxyl radicals at the BDD surface were produced from water oxidation. A partial mineralization of flumequine in a solution near to saturation with optimum 2.0mM Fe(2+) at pH 3.0 was achieved by EF. The PEF process was more powerful, giving an almost total mineralization with 94-96% total organic carbon removal. Increasing current accelerated both treatments, but with decreasing mineralization current efficiency. Comparative treatments using a real wastewater matrix led to similar degradation degrees. The kinetics for flumequine decay always followed a pseudo-first-order reaction and its rate constant, similar for both EAOPs, raised with increasing current. Generated carboxylic acids like malonic, formic, oxalic and oxamic acids were quantified by ion-exclusion HPLC. Fe(III)-oxalate and Fe(III)-oxamate complexes were the most persistent by-products under EF conditions and their quicker photolysis by UVA light explains the higher oxidation power of PEF. The release of inorganic ions such as F(-), NO(3)(-) and in lesser extent NH(4)(+) was followed by ionic chromatography. SN - 1879-2448 UR - https://www.unboundmedicine.com/medline/citation/22348999/Mineralization_of_flumequine_in_acidic_medium_by_electro_Fenton_and_photoelectro_Fenton_processes_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0043-1354(12)00039-5 DB - PRIME DP - Unbound Medicine ER -